首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The structure of paramagnetic centers formed by impurity Ho3+ ions in synthetic forsterite is studied by submillimeter EPR spectroscopy in the frequency range 65–200 GHz. It is found that Ho3+ enters into the Mg2+ sublattice in the form of single ions and dimer centers. The concentration of dimer centers considerably exceeds the concentration of single ions, which points to the molecular self-organization of Ho3+ impurity ions into dimers during the growing of the crystals from melt. Possible structures of the dimer center are discussed. The parameters of the effective spin Hamiltonian describing the behavior of the electron-nuclear sublevels of the two lowest electronic levels of the Ho3+5I8 ground multiplet are determined for a single ion and a dimer center.  相似文献   

2.
Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted М1 and М2, and dimer associates formed by two Yb3+ ions in nearby positions М1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin–spin coupling between ytterbium ions in the associate has predominantly a dipole–dipole character, which makes it possible to control the energy of the spin–spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position М1.  相似文献   

3.
The electron paramagnetic resonance spectra of isolated and dimer impurity centers of trivalent chromium ions in the octahedral Ml sites in synthetic forsterite are studied in the frequency range of 65–90 GHz. The measurements are performed at 4.2 K in magnetic field from ?0.04 to 0.3 T. The zero-field splitting between spin doublets of the isolated Cr3+ ion Δs = 66.7 GHz and between spin sublevels of the Cr3+-Cr3+ dimer Δd1 = 71.5 GHz and Δd2 = 73.0 GHz is measured directly at zero field. The analysis of the spin Hamiltonian parameters shows that the dimer center consists of a pair of Cr3+ ions with an Mg2+ vacancy between them replacing three Mg2+ ions situated in a quasi-one-dimensional chain aligned parallel to the crystal c-axis. It is found that the exchange interaction in the dimer is ferromagnetic with parameters Jz = 0.47 GHz and Jt = 0.79 GHz.  相似文献   

4.
Paramagnetic centers formed by impurity Tm3+ ions in synthetic forsterite Mg2SiO4 were studied by high-frequency tunable electron paramagnetic resonance spectroscopy in the frequency range of 150–315 GHz. Crystals were grown from the melt by the Czochralski technique in slightly oxidizing atmosphere. Several centers distinguished by different zero-field splitting between the ground and first excited singlets were found and investigated. Parameters of the effective spin Hamiltonian for these centers describing the dependence of electron-nuclear sublevels on magnetic field were determined.  相似文献   

5.
The results of electron paramagnetic resonance (EPR) studies of Ce3+ impurity ions in single crystals of lead thiogallate PbGa2S4 have been reported. The Ce3+ ions substitute for Pb2+ ions in the crystal lattice of PbGa2S4. A number of paramagnetic cerium centers in lead thiogallate have been observed. The spectra are described by the spin Hamiltonian of rhombic symmetry with the effective spin S = 1/2. The g factors of the main cerium centers have been determined. A large number of paramagnetic centers are due to both nonequivalent positions of lead and local charge compensation under the substitution Ce3+ ?? Pb2+.  相似文献   

6.
The luminescence of Ca2GeO4: Cr4+ single crystals at wavelengths in the range of 1.3 μm upon excitation with a 1-μ m semiconductor laser is investigated in the temperature range up to 573 K. At T<110 K, the Ca2GeO4: Cr4+ crystals are characterized by the electron paramagnetic resonance, which is attributed to the Cr4+ ions substituted for Ge4+ ions. The components of the g tensor and its principal axes are determined. It is revealed that the Cr4+ impurity centers in calcium germanate affect the crystal symmetry to a lesser degree compared to Cr4+ ions in forsterite. The observed deviation of the temperature dependence of the electron paramagnetic resonance from the Curie law is explained by the transition to the excited state with a low activation energy, as is the case in impurity 3d ions in diamond-like semiconductors. The inference is made that the giant effective degeneracy multiplicity of the excited state is associated with the initiation of soft phonon modes in the crystal upon excitation of the defect.  相似文献   

7.
ZnO:Tb纳米晶的协同发光现象   总被引:12,自引:0,他引:12       下载免费PDF全文
用光致发光的方法研究了掺铽的ZnO纳米晶这种新型掺杂纳米晶体系,观察到了其中的协同发光现象,指出ZnO纳米基质与掺入其中的铽中心之间存在有效的能量传递.该能量传递对稀土铽离子的特征发光起决定性的作用. 关键词: 光致发光 掺杂 纳米晶  相似文献   

8.
The local structure of titanium pair centers in SrF2: Ti crystals is investigated using electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy. It is found that titanium pair centers with spin moment S=2 and tetragonal symmetry of the magnetic properties are formed in SrF2: Ti cubic crystals under certain growth conditions and during annealing. The tensor components of the fine and ligand hyperfine structures in the EPR and ENDOR spectra are determined. A model of the Ti+-Ti3+ paramagnetic dimer is proposed. This model provides an adequate interpretation of both the ferromagnetic nature of the exchange interaction and the observed displacements of four ligands in the first coordination sphere of titanium impurity ions in directions perpendicular to the impurity ion-ligand bonds.  相似文献   

9.
Electron paramagnetic resonance (EPR) of Ho3+ single ions and Ho3+?Mg2+-vacancy-Ho3+ associates in holmium-doped forsterite single crystals are studied at 9.4, 37.3 and 65–250 GHz. Crystals were grown from melt by the Czochralski technique in slightly oxidizing atmosphere. For both centers, directions of the principal magnetic axes and parameters of the effective spin Hamiltonians describing dependences of electron-nuclear levels on applied magnetic field are obtained. For Ho3+ substituting Mg2+ in the M2 site as the single ion and for Ho3+ ions in dimer centers, values of crystal field parameters related to a real crystal lattice structure are estimated in the framework of the exchange charge model. The calculated crystal field energies, values of theg-factors of the ground Ho3+ quasi-doublet and the directions of the corresponding magnetic moments agree satisfactorily with the data obtained from measurements of EPR and optical absorption and site-selective luminescence spectra.  相似文献   

10.
For the first time the exchange interaction between copper and non-Kramers Tb3+ ions was studied by means of electron paramagnetic resonance (EPR). Features of the manifestation of this interaction in the EPR spectra of dimer fragments Cu–Tb and pentanuclear fragments Cu–Tb–Cu–Tb–Cu are analyzed. The possibility to determine the sign and value of this interaction from EPR spectra for the case when the lowest states of Tb3+ are the states |0〉, | ± 1〉 is shown. The exchange interaction between copper and trivalent terbium ions in the studied pentanuclear complex is ferromagnetic. Authors' address: Violeta K. Voronkova, Kazan Physical-Technical Institute, Russian Academy of Sciences, Sibirsky trakt 10/7, Kazan 420029, Russian Federation  相似文献   

11.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

12.
The electron paramagnetic resonance (EPR) spectra of impurity Ho3+ ions in monocrystals LiYF4∶Ho3+ (0.1 and 1%) with the natural abundance of6Li (7.42%) and7Li (92.58%) isotopes, and in the sample7LiYF4∶Ho3+ (0.1%) isotopically pure in7Li were taken at the temperature 4.2 K in the frequency range of 165–285 GHz. Resonance transitions between crystal field sublevels (the ground non-Kramers doublet and the nearest excited singlet) of the5I8 term were detected. The refined set of crystal field parameters and the effective constant of the magnetic hyperfine interaction were determined from the detailed analysis of the recorded spectra at frequencies varied by 0.05 GHz. The fine structure of EPR lines with intervals of about 300 MHz observed in the sample LiYF4∶Ho3+ (0.1%) can be interpreted as a result of the isotopic disorder in the Li sublattices. Direct information about energy gaps at the anticrossing points of the electron-nuclear sublevels of the ground doublet was obtained. These gaps are induced by the hyperfine interaction that mixes doublet and singlet states and by random crystal fields. Weak EPR signals from distorted single ion and pair centers of impurity Ho3+ ions were resolved. From a comparison of the measured and simulated spectra, estimates of spectral parameters of the dimer centers have been obtained.  相似文献   

13.
CsCaF3 crystals doped with Yb3+ ions have been studied using the electron paramagnetic resonance and optical spectroscopy methods. Several types of paramagnetic Yb3+ centers were found, among which a paramagnetic center in the unusual position was established. The parameters of the corresponding spin Hamiltonians and schemes of the energy levels of the observed centers were determined.  相似文献   

14.
Terbium-and (Ce, Tb)-containing glasses prepared using the direct sol-gel-glass transition are studied. It is shown that glasses doped with one activator contain two main types of optical centers, namely, isolated and complex centers, which are characterized by weak and strong cross-relaxation quenching of luminescence from the 5D3 state of Tb3+ ions, respectively. The Ce4+-Tb3+ (Tb4+) complex centers are formed during sintering of coactivated xerogels in oxygen and can be transformed into Ce3+-Tb3+ centers through saturation of the samples with hydrogen. The Ce3+-Tb3+ centers exhibit efficient luminescence from the 5D4 state upon excitation into the absorption bands of Ce3+ ions.  相似文献   

15.
TlGaS2 single crystal doped by paramagnetic Fe3+ ions has been studied by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra reveal a nearly orthorhombic symmetry of the crystal field (CF) on the Fe3+ ions. Two groups each consisting of four equivalent Fe3+ centers were observed in the EPR spectra. The local symmetry of the crystal field on the Fe3+ centers and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of the GaS4 tetrahedrons. The rhombic distortion of the sulfur ligand CF is attributed to the effect of Tl ions located in the trigonal cavities between the tetrahedral complexes. The observed twinning of the resonance lines indicates a presence of two non-equivalent positions of Tl ions that confirms their zigzag alignment in the TlGaS2 crystal structure.  相似文献   

16.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

17.
Using electron paramagnetic resonance (EPR) spectroscopy, we have shown that, upon mecha- noactivated doping of powders of compounds CaF2, SrF2, and BaF2 with Er3+ ions, impurity centers of single erbium ions with cubic symmetry are formed. Investigations of dependences of EPR spectra intensities on the particle size show that the process of mechanochemical doping with Er3+ ions proceeds differently for CaF2, SrF2, and BaF2 host matrices. In the case of CaF2, impurity centers are localized in a very thin near-surface layer of CaF2 particles, in SrF2, the impurity is distributed over the volume of particles, while, in BaF2, there is a layer of a finite thickness for which the probability of doping in the course of mechanosynthesis is very small and the impurity of the rare-earth element is localized in the core of large particles. These data can be explained assuming that the result of mechanosynthesis of particles of fluorides with a fluorite structure doped with Er3+ ions at room temperature is governed by two processes—mechanoactivated diffusion of rare-earth ions into particles and segregation of impurity ions at grain boundaries. In this case, the typical scales for compounds CaF2, SrF2, and BaF2 considerably differ from each other.  相似文献   

18.
The electron paramagnetic resonance (EPR) spectra of Ce3+ and Nd3+ impurity ions in unoriented powders of the YBa2Cu3O6.13 compound are observed and interpreted for the first time. It is demonstrated that, upon long-term storage of the samples at room temperature, the EPR signals of these ions are masked by the spectral line (with the g factor of approximately 2) associated with the intrinsic magnetic centers due to the significant increase in its intensity.  相似文献   

19.
Enhanced green photoluminescence and cathodoluminescence (CL) from Tb3+ ions due to co-doping with Ce3+ ions were observed from SiO2:Ce,Tb powder phosphors prepared by a sol-gel technique. Blue emission from the Ce3+ ions was completely suppressed by Tb co-doping, presumably due to energy transfer from Ce3+ to Tb3+. In addition, the green CL intensity from SiO2:Ce,Tb degraded by ∼50% when the powders were irradiated for 10 h with a 2 keV, 54 mA/cm2 beam of electrons in an ultra-high vacuum chamber containing either 1×10−8 or 1×10−7 Torr O2. Desorption of oxygen from the surface was observed during the decrease of CL intensity. The mechanisms for energy transfer from Ce3+ ions to Tb3+ ions to enhance the green luminescence, and mechanisms for desorption of oxygen from the phosphor surface that would result in decreased CL intensity are discussed.  相似文献   

20.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号