首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
王刚  邵丽晖  刘耀宗  温激鸿 《中国物理》2006,15(8):1843-1848
Based on a better understanding of the lattice vibration modes, two simple spring--mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.  相似文献   

2.
The lumped-mass method is applied to study the propagation of elastic waves in two-dimensional binary periodic systems, i.e., periodic soft rubber/epoxy and vacuum/epoxy composites, for which the conventional methods fail or converge very slowly. A comprehensive study is performed for the two-dimensional binary locally resonant phononic crystals, which are composed of periodic soft rubber cylinders immersed in epoxy host. Numerical simulations predict that subfrequency gaps also appear because of the high contrast of mass density and elastic constant of the soft rubber. The locally resonant mechanism in forming the subfrequency gaps is thoroughly analyzed by studying the two-dimensional model and its quasi-one-dimensional mechanical analog. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap or not is found.  相似文献   

3.
张思文  吴九汇 《物理学报》2013,62(13):134302-134302
本文提出了一种新型局域共振复合单元声子晶体结构, 并结合有限元方法对结构的带隙机理及低频共振带隙特性进行了分析和研究. 共振带隙产生的频率位置由所对应的局域共振模态的固有频率决定, 并且带隙宽度与局域共振模态的品质因子及其与基体之间的耦合作用强度有关. 采用局域共振复合单元结构可以实现声子晶体的多重共振, 在低频范围能打开多条共振带隙, 但受到共振单元排列方式的的影响. 由于纵向和横向局域共振模态的简并, 复合单元结构能在200 Hz以下的低频范围打开超过60%宽度的共振带隙, 最低带隙频率低至18 Hz. 这为声子晶体结构获得低频、超低频带隙提供了一种有效的方法. 关键词: 局域共振 低频带隙 复合单元 声子晶体  相似文献   

4.
Flexural vibration in a pipe system conveying fluid is studied. The pipe is designed using the idea of the phononic crystals. Using the transfer matrix method, the complex band structure of the flexural wave is calculated to investigate the gap frequency range and the vibration reduction in band gap. Gaps with Bragg scattering mechanism and locally resonant mechanism can exist in a piping system with fluid loading. The effects of various parameters on the gaps are considered. The existence of flexural vibration gaps in a periodic pipe with fluid loading lends new insight into the vibration control of pipe system.  相似文献   

5.
LCR分流电路下压电声子晶体智能材料的带隙   总被引:1,自引:0,他引:1       下载免费PDF全文
唐一璠  林书玉 《物理学报》2016,65(16):164202-164202
将带有LCR分流电路的压电陶瓷片对贴在铝和环氧树脂组成的声子晶体结构中.使智能材料的机械振动与压电陶瓷的压电效应耦合起来,推导出机械振动在压电陶瓷片上的等效附加应力;使LCR分流电路中的电磁振荡效应和声子晶体的能带特性有机结合,计算了在分流电路作用下智能材料扭转和弯曲振动的带隙特性,研究了电阻、电感、电容元件的改变对压电声子晶体智能材料带隙的影响.研究结果表明:在合理尺寸下,随着分流电路中电阻值的增大,带隙的频率范围变宽,但衰减幅值有所降低;电感和电容值的增大都可以使带隙向低频移动,带隙的衰减幅值随着电感值的增大而升高,但随着电容值的增大而降低.从而给压电声子晶体智能材料减震降噪的控制提供了一种新思路.  相似文献   

6.
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.  相似文献   

7.
吴健  白晓春  肖勇  耿明昕  郁殿龙  温激鸿 《物理学报》2016,65(6):64602-064602
设计了一种多频局域共振型声子晶体板结构, 该结构由一薄板上附加周期性排列的多个双悬臂梁式子结构而构成. 由于多个双悬臂梁式子结构的低频振动与薄板振动的相互耦合作用, 这种局域共振型板结构可产生多个低频弯曲波带隙(禁带); 带隙频率范围内的板弯曲波会被禁止传播, 利用带隙可以实现对薄板的多个目标频率处低频减振. 本文针对这种局域共振型板结构进行了简化, 并基于平面波展开法建立了其弯曲波带隙计算理论模型; 基于该模型, 结合具体算例进行了带隙特性理论分析. 设计、制备了一种存在两个低频弯曲波带隙的局域共振型板结构样件, 通过激光扫描测振仪测试证实该结构存在两个低频带隙, 在带隙频率范围的板弯曲振动被显著衰减.  相似文献   

8.
The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies.  相似文献   

9.
基于局域共振单元实现声子晶体低频多通道滤波   总被引:2,自引:0,他引:2       下载免费PDF全文
程聪  吴福根  张欣  姚源卫 《物理学报》2014,63(2):24301-024301
从理论上提出一种由局域共振单元组成的声子晶体低频多通道滤波模型.在二维三组元局域共振声子晶体中引入不同填充率的共振单元构成波导结构,通过有限元法计算出其能带结构、透射曲线和透射场图.结果显示:这种设计能够在低频带隙范围内不同填充率散射体的共振频率附近产生新的分立模,且这些分立模能够使相应的声波在声子晶体中沿波导方向传播;这些分立模只与相应的共振单元相关,抗干扰能力强.所得结果为低频多通道滤波器的设计提供了一种新的理论依据.  相似文献   

10.
广义Fibonacci准周期结构声子晶体透射性质的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
曹永军  杨旭 《物理学报》2008,57(6):3620-3624
提出了一维广义Fibonacci准周期结构的声子晶体模型. 对弹性波通过该一维准周期结构声子晶体的透射系数进行数值计算,并与周期结构和标准Fibonacci准周期结构声子晶体的透射系数进行比较. 结果表明,利用一维广义Fibonacci准周期结构的声子晶体可获得比周期结构和标准Fibonacci准周期结构声子晶体更大的带隙范围,同时在带隙内有更丰富的局域模式存在. 对局域模性质的研究有助于声波或弹性波滤波器的制作. 关键词: 广义Fibonacci准周期结构 声子晶体 局域化  相似文献   

11.
The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.  相似文献   

12.
A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.  相似文献   

13.
Using a periodic expansion by means of the Bloch theorem, the flexural vibration band gaps are studied in a thin plate with two-dimensional ternary locally resonant structures, i.e. a thin epoxy plate containing a periodic square array of lead discs hemmed around by rubber. The full band gaps of flexural vibration in the thin plate are obtained within which sound and vibration will be forbidden. The numerical results are used to show how the width of the first full band gap depends on the radius ratio of lead disc to hemmed disc, filling fraction, lattice constant (distance between the centers of the nearest lead discs) and thickness of the thin plate. It is observed that the gap width can be changed a lot by modulating these physical parameters.  相似文献   

14.
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.  相似文献   

15.
The influences of the configurational disorders on phononic band gaps and on waveguide modes are investigated for the two-dimensional phononic crystals consisting of water cylinders periodically arrayed in mercury. Two types of configurational disorders, relevant to the cylinder position and cylinder size respectively, are taken into account. It is found that the phononic band gap and the guide band are sensitive to the disorders, and generally become narrower with the increasing disorders. It is also found that the waveguide side walls without disorder can significantly prevent the guide modes in the waveguide from influence by the disorders in the crystals to a large amount.  相似文献   

16.
Many materials used as phononic crystals (PCs) are viscoelastic one. It is believed that viscosity results in damping to attenuate wave propagation, which may help to tune the defect modes or band gaps of viscoelastic phononic crystals. To investigate above phenomenon, firstly, we have extended the application of boundary element method (BEM) to the study of viscoelastic phononic crystals with and without a point defect. A new developed BEM within the framework of Bloch theory can easily deal with viscoelastic phononic crystals with arbitrary shapes of the scatterers. Experimental methods have been put forward based on the self-made viscoelastic phononic crystals. Verified by the experimental results, systematic comprehensive parametric studies on the band structure of viscoelastic phononic crystals with varying factors (final–initial value ratio, relaxation time, volume fraction of scatterers, shapes of scatterers) have been discussed by the numerical simulation. To further address the possibility to change the defect modes, the band structure of viscoelastic phononic crystals with a point defect has been studied based on the numerical and experimental methods. From present research work, it can be found that by adjusting the two viscous parameters combined with considering the effect of volume fraction and shapes, a wider and lower initial forbidden frequency or lower and higher quality factor resonant frequency can be obtained.  相似文献   

17.
Using finite element method, we have made a theoretically study of the band structure of Lamb wave in a locally resonant phononic crystal strip waveguide with periodic soft rubber attached on the two sides of epoxy main plate. The numerical results show that the Lamb wave band gap based on local resonant mechanism can be opened up in the stub strip waveguides, and the width of the local resonant band gap is narrower than that based on the Bragg scattering mechanism. The results also show that the stub shape and width have influence on the frequency and width of the Lamb wave band gap.  相似文献   

18.
Using the finite element method (FEM), we investigate the existence of absolute band gaps and localized modes associated with a guide in thin films of phononic crystals. Two different structures based on two-dimensional (2D) phononic crystals are considered, namely a free standing plate and a plate deposited on a silicon substrate. The 2D phononic crystal is constituted by a square array of cylindrical holes drilled in an active piezoelectric PZT5A matrix. We demonstrate the existence of absolute band gap in the band structure of the phononic crystal plate and, then, the possibility of guided modes inside a linear defect created by removing one row of air holes. In the case of the supported plate, we show the existence of an absolute forbidden band in the plate modes when the thickness of the substrate significantly exceeds the plate thickness.  相似文献   

19.
Modulating band gaps (extending the bandwidths or shifting into a lower frequency range) is a challenging task in phononic crystals. In this paper, elastic metamaterial plates composed of a square array of “hard” stubs or “soft” stubs on both sides of a 2D binary locally resonant plate are proposed, and their band structures are studied. The dispersion relationships and the displacement fields of the eigenmodes are calculated using finite element methods. Numerical results show that the band gaps are shifted to lower frequencies and the bandwidths are enlarged compared to classic elastic metamaterial plates. A conceptual “analogousrigid mode” that includes an “out-of-plane analogous-rigid mode” and an “in-plane analogous-rigid mode” is developed to explain these phenomena. The “out-of-plane analogous-rigid mode” mainly adjusts the band gaps into the lower frequency range, and the “in-plane analogous-rigid mode” mainly enlarges the bandwidth. Furthermore, the band gap effects of composite “hard” stubs and “soft” stubs are investigated. The results show that the location of the band gaps can be modulated into a relatively lower frequency and the bandwidth can be extended by the use of different composite stubs. These elastic wave properties in the proposed structure can be used to optimize band gaps and possibly produce low-frequency filters and waveguides.  相似文献   

20.
The paper studies the band structures of a two-component Fibonacci phononic quasicrystal which is considered as a phononic crystal disordered in a special way. Oblique propagation in an arbitrary direction of the in-plane elastic waves with coupling of longitudinal and transverse modes is considered. The transfer matrix method is used and the well-defined localization factors which are used to study the ordered and disordered phononic crystals are introduced to describe the band gaps of the phononic quasicrystals. The transmission coefficients are also calculated and the results show the same behaviours as the localization factor does. The results show the merits of using the localization factors. The band gaps of the phononic quasicrystal and crystals with translational and/or mirror symmetries are presented and compared to the perfect phononic crystals. More band structures are exhibited when symmetries are introduced to the phononic quasicrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号