首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CP/MAS 13C NMR spectra of crystalline L-leucine and DL-leucine at 7 T are compared with previously reported spectra at lower field strengths. An increasing dominance of chemical shift effects over residual 14N-13C dipolar interactions is observed on the C alpha and C beta splittings with increasing field strength. A new structure is observed in the 25 ppm region of both samples. The spectra in this region were assigned by application of the depolarisation-repolarisation method. The assignment showed differences in the ordering of peaks between solid state and liquid state chemical shifts.  相似文献   

2.
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.  相似文献   

3.
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.  相似文献   

4.
Despite success of previous studies, high-resolution solid-state NMR (SSNMR) of paramagnetic systems has been still largely unexplored because of limited sensitivity/resolution and difficulty in assignment due to large paramagnetic shifts. Recently, we demonstrated that an approach using very-fast magic angle spinning (VFMAS; spinning speed 20kHz) enhances resolution/sensitivity in (13)C SSNMR for paramagnetic complexes [Y. Ishii, S. Chimon, N.P. Wickramasinghe, A new approach in 1D and 2D (13)C high resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning, J. Am. Chem. Soc. 125 (2003) 3438-3439]. In this study, we present a new strategy for sensitivity enhancement, signal assignment, and distance measurement in (13)C SSNMR under VFMAS for unlabeled paramagnetic complexes using recoupling-based polarization transfer. As a robust alternative of cross-polarization (CP), rapid application of recoupling-based polarization transfer under VFMAS is proposed. In the present approach, a dipolar-based analog of INEPT (dipolar INEPT) methods is used for polarization transfer and a (13)C signal is observed under VFMAS without (1)H decoupling. The resulting low duty factor permits rapid signal accumulation without probe arcing at recycle times ( approximately 3 ms/scan) matched to short (1)H T(1) values of small paramagnetic systems ( approximately 1 ms). Experiments on Cu(dl-Ala)(2) showed that the fast repetition approach under VFMAS provided sensitivity enhancement by a factor of 8-66 for a given sample, compared with the (13)C MAS spectrum under moderate MAS at 5kHz. The applicability of this approach was also demonstrated for a more challenging system, Mn(acac)(3), for which (13)C and (1)H paramagnetic shift dispersions reach 1500 and 700 ppm, respectively. It was shown that effective-evolution-time dependence of transferred signals in dipolar INEPT permitted one to distinguish (13)CH, (13)CH(2), (13)CH(3), (13)CO2- groups in 1D experiments for Cu(DL-Ala)(2) and Cu(Gly)(2). Applications of this technique to 2D (13)C/(1)H correlation NMR under VFMAS yielded reliable assignments of (1)H resonances as well as (13)C resonances for Cu(DL-Ala)(2) and Mn(acac)(3). Quantitative analysis of cross-peak intensities in 2D (13)C/(1)H correlation NMR spectra of Cu(DL-Ala)(2) provided distance information between non-bonded (13)C-(1)H pairs in the paramagnetic system.  相似文献   

5.
93Nb (I = 9/2) multiple-quantum magic-angle spinning (MQMAS) NMR spectra of a series of inorganic niobates have been measured. 93Nb MQMAS spectroscopy yields spectra with typically an order of magnitude higher resolution than that obtainable with 93Nb MAS spectroscopy and 93Nb dynamic-angle spinning (DAS) spectroscopy. For example, the full-width at half-maximums of the 93Nb resonances of LiNbO3 were 9 (MAS), 5.8 (DAS), and 0.7 kHz (MQMAS). Broadening of the 93Nb MAS and DAS spectra is due to the second-order quadrupolar and homonuclear dipolar interactions, respectively. The quadrupolar products (P(O)) and isotropic chemical shifts (delta(iso)) of the 93Nb resonances of LiNbO3, NaNbO3, PbNb2O6, Pb2Nb2O7, Pb3Nb2O8, Pb3Nb4O15, Pb3Nb4O13, and Pb1.83Nb1.71Mg0.29O6.39 were determined from MQMAS spectra and range from 13.6 to 26.8 MHz and from -951 to -1113 ppm, respectively. Resonances with relatively large quadrupolar coupling constants (> 30 MHz) were not observed using MQMAS spectroscopy, but were detected using nutation spectroscopy. The applicability and limitations of MQMAS spectroscopy in studying inorganic niobates containing multiple 93Nb resonances are addressed and compared with those of MAS, nutation, and DAS spectroscopies.  相似文献   

6.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

7.
Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CO N CA experiment establishes the correlation of (13)C(i-1) to (13)C alpha(i) and (15)N(i) by simultaneously encoding the (13)CO(i-1) and (15)N(i) chemical shifts. The CA N COCA experiment establishes the correlation (13)Ca(i) and (15)CO(i) to (13)C alpha(i-1) and (15)N(i-1) within a single experiment by simultaneous encoding of the (13)C alpha(i) and (15)N(i) chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.  相似文献   

8.
We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the alpha- and beta-carbon and alpha-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H(N), N, C(alpha), C(beta), and H(alpha) nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D (15)N-(1)H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.  相似文献   

9.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

10.
Carbon-13 CP/MAS spectra have been obtained for seven polymorphic and solvated forms of cortisone acetate. For signals in the high-frequency region, the spinning sideband manifolds of the spectra recorded under slow-spinning conditions have been analysed to obtain the shielding tensor components for the five resonances at the highest frequency. These show characteristic values for given types of carbon and have enabled assignments of the C5 and C22 signals to be made with some certainty, providing firm evidence of cross-over between the shifts for these carbons between different polymorphs. Assignments are suggested more tentatively for the resonances from C3, C11 and C20. Comparison of chemical shifts for those forms with published X-ray structures enables conclusions to be drawn regarding hydrogen bonding in the remaining forms. Hydrogen bonding induces a high-frequency change in the isotropic chemical shift of approximately 3 ppm.  相似文献   

11.
The paramagnetic metallocenes and decamethylmetallocenes (C(5)H(5))(2)M and (C(5)Me(5))(2)M with M=V (S=3/2), Mn (S=5/2 or 1/2), Co (S=1/2), and Ni (S=1) were studied by (1)H and (13)C solid-state MAS NMR spectroscopy. Near room temperature spinning sideband manifolds cover ranges of up to 1100 and 3500 ppm, and isotropic signal shifts appear between -260 and 300 ppm and between -600 and 1640 ppm for (1)H and (13)C NMR spectra, respectively. The isotropic paramagnetic signal shifts, which are related to the spin densities in the s orbital of ligand atoms, were discussed. A Herzfeld--Berger spinning sideband analysis of the ring carbon signals yielded the principal values of the paramagnetic shift tensors, and for metallocenes with a small g-factor anisotropy the electron spin density in the ligand pi system was determined from the chemical shift anisotropy. The unusual features of the (1)H and (13)C solid-state NMR spectra of manganocene were related to its chain structure while temperature-dependent (1)H MAS NMR studies reflected antiferromagnetic interaction between the spin centers.  相似文献   

12.
We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from (1)H and (2)H spins, taking advantage of their different T(1) relaxation times. Different (1)H- and (2)H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) (1)H→(13)C/(2)H→(13)C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly (2)H, (15)N,(13)C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile (2)H to (1)H. It is demonstrated how 1D (13)C CP/MAS or 2D (13)C-(13)C correlation spectra initialized with polarization from either (1)H or (2)H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D (13)C-(13)C correlation spectra may be recorded interleaved with (2)H-(13)C correlation spectra to obtain (13)C-(13)C correlations along with information about dynamics from (2)H sideband patterns.  相似文献   

13.
Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via (1)H/(15)N and then (15)N/(13)C coherence transfers, for (13)C coherence selection are demonstrated on a (15)N/(13)C-labeled N-acetyl-glucosamine (GlcNAc) compound. The (15)N/(13)C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the (13)C{(15)N/(1)H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the (13)C effective rf field is larger than that of the (15)N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.  相似文献   

14.
In NMR spectra of complex proteins, sparse isotope enrichment can be important, in that the removal of many (13)C-(13)C homonuclear J-couplings can narrow the lines and thereby facilitate the process of spectral assignment and structure elucidation. We present a simple scheme for selective yet extensive isotopic enrichment applicable for production of proteins in organisms utilizing the Entner-Doudoroff (ED) metabolic pathway. An enrichment scheme so derived is demonstrated in the context of a magic-angle spinning solid-state NMR (MAS SSNMR) study of Pf1 bacteriophage, the host of which is Pseudomonas aeruginosa, strain K (PAK), an organism that uses the ED pathway for glucose catabolism. The intact and infectious Pf1 phage in this study was produced by infected PAK cells grown on a minimal medium containing 1-(13)C d-glucose ((13)C in position 1) as the sole carbon source, as well as (15)NH(4)Cl as the only nitrogen source. The 37MDa Pf1 phage consists of about 93% major coat protein, 1% minor coat proteins, and 6% single-stranded, circular DNA. As a consequence of this composition and the enrichment scheme, the resonances in the MAS SSNMR spectra of the Pf1 sample were almost exclusively due to carbonyl carbons in the major coat protein. Moreover, 3D heteronuclear NCOCX correlation experiments also show that the amino acids leucine, serine, glycine, and tyrosine were not isotopically enriched in their carbonyl positions (although most other amino acids were), which is as expected based upon considerations of the ED metabolic pathway. 3D NCOCX NMR data and 2D (15)N-(15)N data provided strong verification of many previous assignments of (15)N amide and (13)C carbonyl shifts in this highly congested spectrum; both the semi-selective enrichment patterns and the narrowed linewidths allowed for greater certainty in the assignments as compared with use of uniformly enriched samples alone.  相似文献   

15.
将漂白化学桉木浆(BCEP)与甲基丙烯酸缩水甘油酯(GMA)的接枝共聚产物(CPGMA)与乙二胺(EDA)反应,合成了多胺型纤维素基螯合纤维CPGMA-EDA。利用傅里叶变换红外光谱(FTIR)、固体核磁共振碳谱(13C CP/MAS NMR)和X射线衍射(XRD)对产物进行了分析。FTIR和13C CP/MAS NMR的研究结果表明,与EDA反应后,CPGMA在904 cm-1波数处的环氧基特征吸收峰基本消失,3 200~3 500 cm-1处的吸收峰因新增N—H伸缩振动而明显增宽,说明大量氨基通过开环反应被接枝到了CPGMA表面;XRD结果表明所得纤维素基螯合纤维的结晶度为48.1%,相对于原漂白化学桉木浆的结晶度下降了31.0%,说明反应不仅发生在纤维素的非结晶区,同时也发生在结晶区。  相似文献   

16.
The supramolecular 1:1 host-guest inclusion compound, p-tert-butylcalix[4]arene x alpha,alpha,alpha-trifluorotoluene, 1, is characterized by 19F and 13C solid-state NMR spectroscopy. Whereas the 13C NMR spectra are easily interpreted in the context of earlier work on similar host-guest compounds, the 15F NMR spectra of solid 1 are, initially, more difficult to understand. The 19F[1H] NMR spectrum obtained under cross-polarization and magic-angle spinning conditions shows a single isotropic resonance with a significant spinning sideband manifold. The static 19F[1H] CP NMR spectrum consists of a powder pattern dominated by the contributions of the anisotropic chemical shift and the homonuclear dipolar interactions. The 19F MREV-8 experiment, which minimizes the 19F-19F dipolar contribution, helps to identify the chemical shift contribution as an axial lineshape. The full static 19F[1H] CP NMR spectrum is analysed using subspectral analysis and subsequently simulated as a function of the 19F-19F internuclear distance (D(FF) = 2.25 +/- 0.01 A) of the rapidly rotating CF3 group without including contributions from additional libration motions and the anisotropy in the scalar tensor. The shielding span is found to be 56 ppm. The width of the centerband in the 19F[1H] sample-spinning CP NMR spectrum is very sensitive to the angle between the rotor and the magnetic field. Compound 1 is thus an attractive standard for setting the magic angle for NMR probes containing a fluorine channel with a proton-decoupling facility.  相似文献   

17.
We describe investigations of the effects of rotational resonance (R(2)) on solid state (13)C NMR spectra of uniformly (13)C-labeled samples obtained under magic-angle spinning (MAS), and of the utility of R(2) measurements as structural probes of peptides and proteins with multiple uniformly labeled residues. We report results for uniformly (13)C-labeled L-alanine and L-valine in polycrystalline form, and for amyloid fibrils formed by the 15-residue peptide A beta(11-25) with uniform labeling of a four-residue segment. The MAS NMR spectra reveal a novel J-decoupling effect at R(2) conditions that may be useful in spectral assignments for systems with sharp (13)C MAS NMR lines. Pronounced dependences of the apparent isotropic (13)C NMR chemical shifts on MAS frequency near R(2) conditions are also observed. We demonstrate the feasibility of quantitative (13)C-(13)C distance determinations in L-valine, and qualitative determinations of inter-residue (13)C-(13)C contacts in A beta(11-25) fibrils. Finally, we demonstrate a "relayed" R(2) technique that may be useful in structural measurements on systems with poorly resolved (13)C MAS NMR lines.  相似文献   

18.
13C cross-polarization (CP) magic angle spinning (MAS) solid state NMR spectra of hydrochlorides and perchlorates of buspirone analogues (2-5) were recorded. In the spectra for each compound, one set of signals appeared, in agreement with single crystal X-ray diffraction data indicating the presence of one molecule per crystal unit. The resonances of 2-5 hydrochlorides were assigned by comparison with the solution chemical shifts. For perchlorate 2b and diperchlorate 2c, the reasonable assignment of signals was made with the aid of the theoretical studies. Ab initio calculations of the carbon shieldings were performed by means of the GIAO-CHF method for two model systems: perchlorate and diperchlorate of quinoline-(N-methyl)piperazine. As no remarkable differences between carbon chemical shifts of hydrochlorides 3-5 in solid state and in solution were observed, it was concluded that in solution these compounds adopted the same conformation as in the solid state.  相似文献   

19.
Magic angle spinning (MAS) NMR with Lee-Goldburg cross-polarization (LG-CP) is used to promote long-range heteronuclear transfer of magnetization and to constrain a structural model for uniformly labeled chlorophyll a/H(2)O. An effective maximum transfer range d(max) can be determined experimentally from the detection of a gradually decreasing series of intramolecular correlations with the (13)C along the molecular skeleton. To probe intermolecular contacts, d(max) can be set to approximately 4.2 A by choosing an LG-CP contact time of 2 ms. Long-range (1)H-(13)C correlations are used in conjunction with carbon and proton aggregation shifts to establish the stacking of the chlorophyll a (Chl a) molecules. First, high-field (14.1 T) 2-D MAS NMR homonuclear ((13)C-(13)C) dipolar correlation spectra provide a complete assignment of the carbon chemical shifts. Second, proton chemical shifts are obtained from (1)H-(13)C heteronuclear dipolar correlation spectroscopy in high magnetic field. The shift constraints and long-range (1)H-(13)C intermolecular correlations reveal a 2-D stacking homologous to the molecular arrangement in crystalline solid ethyl-chlorophyllide a. A doubling of a small subset of the carbon resonances, in the 7-methyl region of the molecule, provides evidence for two marginally different well-defined molecular environments. Evidence is found for the presence of neutral structural water molecules forming a hydrogen-bonded network to stabilize Chl a sheets. In line with the microcrystalline order observed for the rings, the long T(1)'s, and absence of conformational shifts for the (13)C in the phytyl tails, it is proposed that the Chl a form a rigid 3-D space-filling structure. Probably the only way this can be realized with the sheets is by forming bilayers with interpenetration of elongated tails. Such a 3-D space-filling organization of the aggregated Chl a from MAS NMR would match existing models inferred from electron microscopy and low-resolution X-ray powder diffraction, while a micellar model based on neutron diffraction and antiparallel stacking observed in solution can be discarded.  相似文献   

20.
13C cross-polarization/magic-angle spinning (CP/MAS) solid-state NMR spectroscopy has been employed to analyze four vitamin D compounds, namely vitamin D3 (D3), vitamin D2 (D2), and the precursors ergosterol (Erg) and 7-dehydrocholesterol (7DHC). The 13C NMR spectrum of D3 displays a doublet pattern for each of the carbon atoms, while that of Erg contains both singlet and doublet patterns. In the cases of 7DHC and D2, the 13C spectra display various multiplet patterns, viz. singlets, doublets, triplets, and quartets. To overcome the signal overlap between the 13C resonances of protonated and unprotonated carbons, we have subjected these vitamin D compounds to 1D 1H-filtered 13C CP/MAS and {1H}/13C heteronuclear correlation (Hetcor) NMR experiments. As a result, assisted by solution NMR data, all of the 13C resonances have been successfully assigned to the respective carbon atoms of these vitamin D compounds. The 13C multiplets are interpreted due to the presence of s-cis and s-trans configurations in the α- and β-molecular conformers, consistent with computer molecular modeling determined by molecular dynamics and energy minimization calculations. To further characterize the ring conformations in D3, we have successfully extracted chemical shift tensor elements for the 13C doublets. It is demonstrated that 13C solid-state NMR spectroscopy provides a robust and high sensitive means of characterizing molecular conformations in vitamin D compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号