首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotational resonance in uniformly 13C-labeled solids: effects on high-resolution magic-angle spinning NMR spectra and applications in structural studies of biomolecular systems
Authors:Petkova Aneta T  Tycko Robert
Institution:Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
Abstract:We describe investigations of the effects of rotational resonance (R(2)) on solid state (13)C NMR spectra of uniformly (13)C-labeled samples obtained under magic-angle spinning (MAS), and of the utility of R(2) measurements as structural probes of peptides and proteins with multiple uniformly labeled residues. We report results for uniformly (13)C-labeled L-alanine and L-valine in polycrystalline form, and for amyloid fibrils formed by the 15-residue peptide A beta(11-25) with uniform labeling of a four-residue segment. The MAS NMR spectra reveal a novel J-decoupling effect at R(2) conditions that may be useful in spectral assignments for systems with sharp (13)C MAS NMR lines. Pronounced dependences of the apparent isotropic (13)C NMR chemical shifts on MAS frequency near R(2) conditions are also observed. We demonstrate the feasibility of quantitative (13)C-(13)C distance determinations in L-valine, and qualitative determinations of inter-residue (13)C-(13)C contacts in A beta(11-25) fibrils. Finally, we demonstrate a "relayed" R(2) technique that may be useful in structural measurements on systems with poorly resolved (13)C MAS NMR lines.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号