首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present experimental and theoretical evidence of the role played by the spin–orbit coupling in the electronic structure of a pseudomorphic Au monolayer on Nb(001) substrate. The bands found with the help of the angle‐resolved ultraviolet photoelectron spectroscopy (ARUPS) are compared with those obtained from ab initio self‐consistent calculations by the VASP and WIEN2k codes. The slab calculations are performed including geometric relaxation and using both the generalized‐gradient (GGA) and local‐density (LDA) approximations for the exchange–correlation energy. The dispersions and energy positions of the calculated bands agree with the experimentally determined band structure only if the LDA is used and the spin–orbit coupling is included. Therefore, both the structure relaxation and spin–orbit coupling are essential in understanding the electronic structure of the Au/Nb(001) system.

  相似文献   


2.
Twinning in a CuInS2 layer in a completed thin‐film solar cell was analyzed by means of electron backscatter diffraction. This technique revealed the microstructure of the CuInS2 thin films and local orientation relationships between the grains. At various locations within the layer it was possible to retrace how twinning occurred comparing the local orientations with the theoretically possible changes in orientation by twinning. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


3.
The fabrication of titania nanostructures with hierarchical order of different structural levels is investigated. The nanostructures are prepared with a diblock‐copolymer assisted sol–gel process. By iterative spin‐coating of the solution onto silicon substrates a thin polymer‐nanocomposite film is deposited and transformed to purely anatase titania nanostructures via calcination. In total, this procedure is repeated three times on top of the substrate. The approach is monitored with grazing incidence small angle X‐ray scattering after each fabrication step. With scanning electron microscopy the final hierarchical structure is imaged. From the characterization different structural levels are clearly identified.

  相似文献   


4.
The multiferroic Pb(Fe1/2V1/2)O3 (PFV) bulk ceramic was fabricated by a conventional ceramic sintering method. The strong visible‐light photovoltaic effect in Sn‐doped‐In2O3(ITO)/PFV/ITO structure capacitor was observed. The open‐circuit voltage was up to ~0.7 V, which was much higher than the value (~0.3 V) in BiFeO3 film. The photo‐excited electric current is almost proportional to the incident light illumination intensity. The good visible‐light photovoltaic makes PFV ceramic a potential candidate for practical application in solar cell devices.

  相似文献   


5.
The authors describe an organic complementary inverter with N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide as an n‐type semiconductor and pentacene as a p‐type semiconductor. Each transistor of the inverter exhibited high carrier mobility: 1.62 cm2/Vs for an n‐type drive transistor and 0.57 cm2/Vs for a p‐type switch transistor. The gain of the inverter reached 125. Another inverter using Ta2O5 as a high κ gate dielectric performed well with a gain of 500 and an operation voltage of only 5 V.

  相似文献   


6.
We report a stacked Y2O3/TiOx resistive random access memory (RRAM) device, showing good high‐temperature switching characteristics of extremely low reset current of 1 μA at 150 °C, large off/on resistance window (>200) at 150 °C, large rectification ratio of ~300 at 150 °C and good current distribution at 85 °C. The good rectifying property, lower high‐temperature sneak current and tighter high‐temperature current distribution can be attributed to the combined results of the oxygen vacancies in TiOx and the related carrier depletion effect.

  相似文献   


7.
We demonstrate by a Monte Carlo simulation that the reflection of quasi‐ballistically accelerated electrons at the interfaces of an In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As double‐heterojunction structure is able to generate current oscillations at frequencies in the THz range. The possibility of taking advantage of this mechanism to generate THz signals has been demonstrated in structures with well dimension close to the electron ballistic transport length in In0.53Ga0.47As.

  相似文献   


8.
We discovered and characterized the χ (3)‐active Na3Li(SeO4)2·6H2O crystal with considerably high Raman gain coefficients for laser physics and nonlinear optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


9.
The crystallization process of mechanically alloyed Fe75Zr25 metallic glasses is investigated by means of both thermo‐magnetization and in situ neutron powder thermo‐diffraction experiments in the temperature range 300–1073 K. It was found that the crystallization takes place in a two‐step process, involving firstly the appearance of metastable Fe and Fe2Zr crystalline phases between 880 K and 980 K, and a subsequent polymorphic transformation into Fe3Zr above 980 K. These findings explain the anomalous magnetization vs. temperature behaviour on heating–cooling cycles.

  相似文献   


10.
We have shown that nitrophenyl groups may be added to the surface of few‐layer epitaxial graphene (EG) by the formation of covalent carbon–carbon bonds thereby changing the electronic structure and transport properties of EG from near‐metallic to semiconducting. In the present Letter we discuss the opportunities afforded by such chemical processes to engineer device functionality in graphene by modification of the electronic properties without physical patterning.

  相似文献   


11.
We demonstrate the monolithic integration of a microstructured organic photodiode with a planar optical stripe waveguide. The manufacturing of this waveguide‐integrated organic photodiode is based on an UV photolithography process. The integration of photodiodes with optical waveguides represents an essential building block in the field of optoelectronic‐photonic integrated circuits.

  相似文献   


12.
Graphene, the two‐dimensional form of carbon presents outstanding electronic and transport properties. This gives hope for the development of applications in nanoelectronics. However, for industrial purpose, graphene has to be supported by a substrate. We focus here on the graphene‐on‐SiC system to discuss how the SiC substrate interacts with the graphene layer and to show the effect of the interface on graphene atomic and electronic structures.

  相似文献   


13.
We report the fabrication procedure and the characterization of an Al0.3Ga0.7As solar cell containing high‐density GaAs strain‐free quantum dots grown by droplet epitaxy. The production of photocurrent when two sub‐bandgap energy photons are absorbed simultaneously is demonstrated. The high quality of the quantum dot/barrier pair, allowed by the high quality of nanostructured strain‐free materials, opens new opportunities for quantum dot based solar cells.

  相似文献   


14.
Nanostructures formed in a titanium dioxide (TiO2)–poly(styrene)‐block‐poly(ethyleneoxide) nanocomposite film on top of fluor‐doped tin oxide (FTO) layers are investigated. The combinatorial approach is based on probing a wedge‐shaped FTO‐gradient with grazing incidence small angle X‐ray scattering (GISAXS) in combination with a moderate micro‐focus X‐ray beam. The characteristic lateral length is given by adjacent nanowire‐shaped TiO2 regions. It decreases from 200 nm on the thick FTO layer to 90 nm on the bare glass surface.

  相似文献   


15.
In this Letter, we report a low operation voltage and high mobility flexible InGaZnO thin‐film transistor (TFT) using room‐temperature processed Y2O3/TiO2/Y2O3 gate dielectric. The flexible IGZO TFT showed a low threshold voltage of 0.75 V, a small sub‐threshold swing of 137 mV/decade, a good field effect mobility of 32.7 cm2/V s, and a large Ion/Ioff ratio of 1.7 × 106. The low operation voltage, small sub‐threshold swing and high mobility could be ascribed to the combination of high‐κ TiO2 and large band gap Y2O3, which provide the potential to meet the requirements of low‐temperature and low‐power portable electronics.

  相似文献   


16.
We show, using Density Functional Theory (DFT) calculations, that compressed AgF2 should turn above 17 GPa into a layered narrow‐gap material with a huge intralayer antiferromagnetic (AFM) coupling constant, reminiscent of those seen for parent copper (II) oxides (e.g., La2CuO4). Compressed AgF2 is thus the first candidate for the non‐oxocuprate two‐dimensional antiferromagnet. Calculations indicate that AgF2 could subsequently be metallised above 38 GPa, likely giving rise to superconductivity (SC).

  相似文献   


17.
The Fe3O4(111)/graphene/Ni(111) trilayer is proposed to be used as an ideal spin‐filtering sandwich where the half‐metallic properties of magnetite are used. Thin magnetite layers on graphene/Ni(111) were prepared via successive oxidation of a thin iron layer predeposited on graphene/Ni(111) and the formed system was investigated by means of low‐energy electron diffraction and photoelectron spectroscopy. The electronic structure and structural quality of the graphene film sandwiched between two ferromagnetic layers remain unchanged upon magnetite formation as confirmed by experimental data.

  相似文献   


18.
Lead carbonate chloride, Pb2CO3Cl2, known as mineral phosgenite, is introduced as a novel SRS‐active carbonate crystal with tetragonal symmetry. Under picosecond one‐micron laser pumping Raman‐induced χ(3)‐nonlinear generation in the near‐IR is observed. All recorded high‐order Stokes and anti‐Stokes sidebands are identified and attributed to two SRS‐promoting vibration modes with ωSRS1 ≈ 1062 cm–1 and ωSRS2 ≈ 86 cm–1.

  相似文献   


19.
In the present work, a review of the metallic (M) and semiconducting (S) separation of single‐wall carbon nanotubes (SWCNTs) using polysaccharide gels is presented. First, the progress of the M/S separation is described, including the following: the discovery of high‐yield separation using agarose gel electrophoresis, the separation of SWCNTs without an electric field, such as through the use of the freeze and squeeze method, the development of continuous separation using column chromatography, and the single‐chirality separation of SWCNTs using a multicolumn with dextran‐based gel. Next, the separation mechanism using gel is discussed, in which separation is achieved by selective adsorption of S‐SWCNTs by gel with a specific combination of surfactant and gel. Lastly, future directions for the separation of SWCNTs and for the use of the separated SWCNTs are discussed.

  相似文献   


20.
We demonstrated important changes produced on the modulation frequency of hybrid organic–inorganic light‐emitting diodes to examine the applicability as a light source for visible optical communications. The fabricated device structure was 4,4′‐bis[N ‐(1‐napthyl)‐N ‐phenyl‐amino]biphenyl/4,4′‐(bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl:4,4′‐bis[9‐dicarbazolyl]‐2,2′‐biphenyl/ZnS/LiF/MgAg. This device showed an improvement in the modulation frequency using ZnS instead of an organic material, tris(8‐hydroxyquinoline)aluminum. A maximum cutoff frequency of 20.6 MHz was achieved.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号