首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有变焦镜头标定方法难度大、动态精度低等问题,提出一种基于单应性矩阵的动态变焦双目内外参数估计方法和平面快速重建方法。利用双目图像匹配点及变焦前后的匹配点进行两类单应性矩阵估计;基于变焦数学模型和单应性矩阵,求解变焦后双目内外参数,实现畸变后双目参数动态估计与优化;通过双目图像单应性进行平面快速匹配和重建。实验结果表明,计算的内外参数与标定结果吻合较好;变焦后,推导的单应性矩阵归一化误差小于0.01,图像重投影误差小于1pixel;重建精度小于0.1mm。  相似文献   

2.
多自由度双目立体视觉系统可以解决传统双目立体视觉视场区域小的问题。避免双目摄像机每转动一个角度都需要重新标定外参数,提出了一种基于转轴参数的标定方法。只需标定出初始位置时双目摄像机的内外参数,使摄像机绕转轴旋转,根据单应性原理测量摄像机与标定模板的位姿关系,确定转轴方向矢量与轴上点坐标。最终利用Rodrigues旋转矩阵确定旋转已知角度后双目摄像机的外参数,实现多自由度双目系统的标定。实验结果表明,提出的方法能准确测量转轴参数,完成多自由度双目立体视觉系统的快速标定,提高系统的工作效率。  相似文献   

3.
一种双目立体视觉系统的误差分析方法   总被引:18,自引:0,他引:18  
基于摄像机透视成像的针孔模型,分析了立体视觉中摄像机标定和三维重建过程的主要误差来源。基于各主要误差源的模型分析,建立了双目视觉系统3D测量误差与摄像机参数、基线长度、测量距离等因素之间的关系式。如已知相关参数,可以估算出双目视觉系统的3D测量精度,或根据3D测量精度要求,初步确定摄像机的内部各项参数和基线长度、测量距离等参数。  相似文献   

4.
在传统双目立体视觉传感器的基础上,对基于平面镜成像的单摄像机立体视觉传感器进行了研究。在电荷耦合器件(CCD)摄像机前放置一平面反射镜,通过对目标物体和其虚像进行拍摄,得到一幅具有视差的图像,该图像相当于摄像机和其在平面镜中的虚拟摄像机从不同角度对目标物体进行拍摄,具有双目立体视觉的功能。建立了单摄像机立体视觉传感器数学模型,分析了参数对单摄像机立体视觉传感器的视场范围和测量精度的影响,设计了传感器参数尺寸,进行了相关实验验证。实验结果表明,该测量方案方便有效,结构简单,调节方便,尤其适合近距离高精度测量。  相似文献   

5.
为了提高大视场、远距离的双目摄像机标定精度,提出一种基于位姿约束的摄像机标定算法。该方法利用双目摄像机之间的三维位姿关系是刚体变换这一属性,标定出左、右摄像机相对位姿的外部参数。利用相对位姿为约束条件求取摄像机的初始内部参数,剔除较大的重投影误差值对应的标定图像组,重复迭代直至重投影误差平均值小于指定值,得到多个待优化的摄像机内部参数。再将最后标定图像组的角点坐标、待优化的摄像机内部参数和相应的外部参数,建立一个以角点三维重构坐标值与实际设定角点三维坐标值的模均值为最小的目标函数,求解出双目摄像机标定参数的最优解。该方法很好地解决了误差大的标定图像造成的影响,且充分利用了双目摄像机之间的位姿约束关系。通过仿真和标定实验可以看出,本文方法可以实现大视场双目摄像机的高精度标定。  相似文献   

6.
摄像机的快速高精度标定一直是视觉测量中亟需解决的主要问题,目前针对不同的摄像机成像模型有多种标定方法。提出了一种基于圆形标记点以及极径、极角的棋盘格角点排序算法,实现了单目和多目摄像机的高精度全自动标定。通过实验验证了该算法对于不同位姿标定图像的有效性和稳健性,实验结果表明改进后的标定方法既保证了摄像机的标定精度,又提高了标定的自动化程度,可以广泛应用于机器视觉中的单目和双目摄像机的标定。  相似文献   

7.
双目视觉作为一种非接触三维(3D)测量技术,其位姿标定结果的好坏将直接影响3D物体测量的精度。基于迭代最近点(ICP)算法获得两组点集之间平移和旋转参数的原理,提出了一种在传统双目位姿标定结果的基础上补偿双目标定矩阵改善精度的方法。介绍了摄像机模型、双目视觉测量模型和ICP算法的基本思想。用双目摄像机标定的外参数和相同的靶标坐标系获得双目视觉位姿矩阵,在此提出基于ICP算法获得两组点集的旋转平移矩阵补偿双目位姿矩阵的方法,以及相应的靶标角点坐标投影误差分析模型。双目摄像机采集9组5×7个角点的靶标标定图像,应用ICP算法补偿双目位姿矩阵,并采用误差模型对9组标定结果进行了分析,双目结构光标定改进实验结果表明,应用ICP算法补偿双目标定模型能显著地提高双目标定的精度。  相似文献   

8.
崔恩坤  滕艳青  刘佳伟 《应用光学》2020,41(6):1174-1180
双目视觉测量系统利用三角测量法原理进行三维测量,其结构特性决定了测量误差随测量距离的增加而增大。针对测量误差的分布规律,该文提出基于局部视场的双目视觉测量系统优化方法。利用外在结构建立测量坐标系,减小标定和测量过程信息非一致性引入的系统误差;利用相机参数之间的耦合作用补偿系统固有参数标定误差并建立查找表,建立关于标定参数的虚拟映射。模拟实验最大误差小于0.03 mm,系统实验误差小于0.3%,实验表明优化后系统主要测量误差来源于探测器离散化引入的随机误差,双目视觉测量系统达到理论测量精度。  相似文献   

9.
基于神经网络的视觉系统标定方法   总被引:3,自引:1,他引:2  
为了解决摄像机标定存在的若干问题 ,根据立体视觉原理 ,提出了基于神经网络的双目视觉系统标定方法。通过对双目摄像机的有效视场分析 ,确定了一次测量面积 ,并把像对视差作为网络输入 ,建立空间点世界坐标与图像坐标非线性映射关系 ,使系统不经过复杂的摄像机内外参数标定 ,就能直接提取物体的三维信息 ,增加了系统的灵活性。实验证明 ,该方法有效可行  相似文献   

10.
在研究传统摄像机标定原理及方法的基础上,提出了一种新的基于同心圆环点模板的双目摄像机标定方法。该方法仅要求摄像机摄取任一方位包含所有25个同心圆环点的所设计模板的一幅图像,即可根据射影几何内秉的约束条件和左右图像的视差完成对双目摄像机焦距、基线距离和光心位置等参数的标定,且不需要进行图像的畸变校正与匹配。实验表明,该双目摄像机的标定方法具有较高的精度和效率,可以方便、迅速地实现双目摄像机的标定。  相似文献   

11.
项辉宇  韩宝安  刘倩倩  李鹤 《应用声学》2014,22(11):3508-3511
随着计算机技术和信息技术的发展,视觉检测技术被引入到板料成形应变测量中。通过基于先进的图像处理软件HALCON,利用双目立体视觉原理,对摄像机进行标定,以获取摄像机的内外参数,并分析图像数量对标定准确度的影响。利用视差原理获得匹配点的三维坐标,根据圆形网格变形后的椭圆长短轴的长度变化,计算真实应变,并分析匹配误差对三维重建的影响,用OpenGL语言将应变可视化;在VC6.0下调用HALCON的算子库编程实现板料成形网格应变测量系统,实验证明该系统在速度、准确度方面能够达到测量要求。  相似文献   

12.
针对逆向工程中引导性曲面边界信息的快速获取问题,系统地研究了共轴立体视觉测量方法,建立该方法的数学模型,详细分析了摄像机焦距、基线距等系统结构参数及被测点空间位置对测量精度的影响,通过数学分析确定摄像机基线距的最佳取值范围,研究共轴立体视觉测量系统特殊的极线几何关系.提出基于共轴立体视觉的曲面边界快速测量方法,利用三坐标测量机的精密机械系统及精确的空间定位能力,用单个摄像机以两次共轴定位摄取图像的方式实现共轴立体视觉测量功能,然后利用共轴立体视觉外极线相互平行且通过各自像平面主点的特殊极线几何关系简化同源像点匹配过程,从而快速获取被测曲面的边界信息.实验结果表明:用基于三坐标测量机的单摄像机共轴立体视觉测量方法获取的曲面边界平均误差为0.268 mm,基本满足逆向工程中对引导性曲面边界的测量精度要求.  相似文献   

13.
为在惯性约束聚变系统中开展靶丸空间坐标的高精度测量,针对人工方式瞄准方法在安装调试上存在费力费时、自动化程度不高等缺点,采用基于双目视觉的方法,利用高精度2维标定板,通过迭代方法使角点提取精度达到0.1个亚像素,采用奇异值分解法来去除奇异点、改进的张正友标定算法等手段提高了标定精度。实验表明,在坐标测量精度均为25μm,距离测量的系统最大误差小于100μm,指标能满足系统要求。  相似文献   

14.
针对逆向工程中引导性曲面边界信息的快速获取问题,系统地研究了共轴立体视觉测量方法,建立该方法的数学模型,详细分析了摄像机焦距、基线距等系统结构参数及被测点空间位置对测量精度的影响,通过数学分析确定摄像机基线距的最佳取值范围,研究共轴立体视觉测量系统特殊的极线几何关系.提出基于共轴立体视觉的曲面边界快速测量方法,利用三坐标测量机的精密机械系统及精确的空间定位能力,用单个摄像机以两次共轴定位摄取图像的方式实现共轴立体视觉测量功能,然后利用共轴立体视觉外极线相互平行且通过各自像平面主点的特殊极线几何关系简化同源像点匹配过程,从而快速获取被测曲面的边界信息.实验结果表明:用基于三坐标测量机的单摄像机共轴立体视觉测量方法获取的曲面边界平均误差为0.268mm,基本满足逆向工程中对引导性曲面边界的测量精度要求.  相似文献   

15.
条纹投影三维测量技术的检测精度依赖于绝对相位与深度关系的标定过程,传统的标定方法步骤复杂、用时较长,在双目测量系统中对左右相机分别标定时尤为明显。因此设计一种基于立体靶标的标定方法,靶标由两个平面组成,各个靶标平面上附着规格已知的图案,平面连接处用特殊图案标识,用于区分左右两面。立体标靶实现双目测量系统相机外部参数与相位-深度的同时标定,将标定时间减少了一半,简化了标定流程;经过实验验证,利用立体标靶可以精确地进行深度(Z)以及横向(XY)的标定,实测误差小于0.053毫米,方法在双目乃至多节点三维测量系统的标定过程中具有应用价值,增加标定效率同时可避免累计误差产生。  相似文献   

16.
基于同心圆合成图像匹配的双目视觉标定   总被引:6,自引:1,他引:5  
侯俊捷  魏新国  孙军华 《光学学报》2012,32(3):315003-161
分析了双目视觉传感器的数学模型,提出了一种基于同心圆合成图像匹配的双目视觉传感器的标定方法。在测量范围内任意多次摆放同心圆靶标,由两台摄像机拍摄靶标图像。根据摄像机模型与已知同心圆在靶标坐标系上的位置关系,构造合成图像,将合成图像与观测图像进行相似度匹配,通过优化定位得到靶标上每个圆的圆心点图像坐标。利用左右图像对应的圆心图像坐标和双目视觉的约束关系,对双目视觉传感器参数进行非线性优化,并得到最优解。所提出的标定方法是在张正友方法的理论基础上,利用了图像的整体性进行的优化。实验结果表明,该方法提高了标定精度。  相似文献   

17.
为了实现对跨尺度零件微小结构的尺寸精度和定位精度的同时测量,提出一种基于宏微复合标定的测量方法。建立不同尺度传感器组合式测量的标定模型,利用变焦扫描显微系统测量零件微尺度特征,利用双目系统测量定位显微设备,从控制坐标转换精度的角度设计加工特殊的标定块,将其作为跨尺度中转坐标系,标定变焦扫描显微重建点云坐标系与测头坐标系的空间转换关系,从而将局部测量点云统一至一个数据集中以完成所有局部区域的整体拼接。与理论模型对比分析,所提测量方法的各孔圆心坐标分布圆度误差为0.0438 mm,平面度误差为0.0252 mm,对喷注器各孔位姿的点误差值小于0.029 mm,孔轴向误差小于0.1140°。与面结构光传感器重建结果对比分析,所提模型能够在保证高精度重建三维形貌的情况下,更加正确地获取跨尺度零件的尺寸和位置。  相似文献   

18.
针对用非平行双目视觉系统进行水下拍摄测量时,由于折射所导致的测量误差较大、精度不高的问题,建立了基于折射光路的水下双目视觉系统测量模型,并以Agrawal方法为基础,在已知两摄像机相对位置关系的前提下,对该测量模型参数标定的方法进行了改进。为验证改进的Agrawal方法的可靠性,与Agrawal方法进行水下标定对比实验。结果表明,相较于Agrawal标定算法得到的防水罩法向量这一模型参数,提出的改进算法的结果与真实值更为接近。在此基础上,应用标定后的水下双目视觉系统测量模型对水下靶标标定点间的标准距离进行测量,测量误差平均值为-0.0134 mm,最大误差为0.2073 mm,与空气中双目视觉系统测量精度相当。  相似文献   

19.
光笔式单目视觉测量系统的关键技术   总被引:4,自引:0,他引:4  
为了对机械加工部件进行高精度、大尺寸、三维立体空间的现场实时测量,建立了光笔式单目视觉测量系统。对该系统中的新型光笔工艺、算法转换模型、摄像机焦距的优化、光笔笔尖位置的标定进行了研究。首先提出了一种利用光刻工艺设计制作的新型光笔,其次,基于近景摄影测量学中的单像空间后方交会原理,建立了一种新的光笔坐标系与摄像机坐标系之间的转换模型,通过最小二乘平差法循环迭代求解最优的单像空间外方位元素,从而确定了转换模型基本参数。最后,分析了摄像机焦距对光笔式单目视觉测量系统结果的影响,并提出了一种确定相对准确焦距和光笔测头在光笔坐标系下的位置的方法。实验结果表明:摄像机坐标系下x轴、y轴、z轴方向的稳定性误差分别为0.042、0.048、0.066 mm;测量最大误差为0.173 mm,较大程度上满足了光笔式单目测量系统稳定性强和精度高的要求。  相似文献   

20.
基于光学参考棒的立体视觉测量系统现场标定技术   总被引:9,自引:5,他引:4  
为实现大空间复杂工件的准确测量,精确标定立体视觉系统变得越来越重要。为了克服传统立体摄像机标定过程繁复、户外实现困难的弱点,提出了一种基于光学参考棒的灵活、有效的立体视觉测量系统标定技术。参考棒水平和深度方向各有三个距离已知的红外LED作为特征点。通过在测量范围内的不同位置和方位移动光学参考棒,两像机同时捕获参考棒上特征点的图像。基于匹配的特征像点以及对极线约束,利用线性算法和Levenberg-Marquardt(LM)迭代算法快速地标定立体视觉测量系统。两像机之间平移量的比例因子由参考棒上特征点间的已知距离确定。参量标定过程中,自动地控制光强,优化曝光时间,使不同位置处光点图像的强度均一致,可以获得高的信噪比,提高标定精度。实验结果表明,该方法灵活、有效,在线标定能达到很高的精度,将现场标定过程应用到实际的大空间三维测量系统中,测量最大误差为0.18 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号