首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文通过建立绝热模型,理论上分析了小孔型脉冲管制冷机内部气体微团的运动过程,定性地推导出了小孔型脉冲管制冷机冷端的相位差,以及冷端和热端的最大位移量。同时分析了频率、温度和小孔阻力对相位角和最大位移量的影响以及超高频下脉冲管制冷机冷头温度比一般高频制冷机高的原因。  相似文献   

2.
射流损失---小孔型脉冲管制冷机的一种重要损   总被引:1,自引:0,他引:1  
脉冲管冷端和热端的层流化元件是脉冲管制冷机的重要部分。本文从流体力学、热力学出发,分析了小孔型脉冲管热端的流动过程和热力过程,确定了小孔型脉冲管的制冷机理。在此基础上,分析表明在脉冲管热端存在射流现象和涡流现象,导致一种气流混合的损失。本文称之为射流损失。设计了几种改进结构,实验验证了这种损失的存在同时也揭示了改进方法的有效性。  相似文献   

3.
高频脉冲管制冷机流动特性实验分析   总被引:1,自引:0,他引:1  
系统的测量了不同运行条件下,高频脉冲管制冷机蓄冷器冷端压力波幅值、速度波幅值以及它们之间相位差的变化规律。结合焓流理论,解释了小孔开度、充气压力、压比和运行频率,在高频条件下对制冷性能的影响规律。所得结果定性解释了制冷机中相应的实验现象,对于高频脉冲管制冷机的机理理解和实验研究有重要指导意义。  相似文献   

4.
使用非平衡分子动力学模拟方法分析了微通道脉冲管(MPT)中由正弦速度活塞提供驱动力时He气交替振荡的微观动力学过程,并对MPT的冷却机制进行了分析.结果表明,MPT的压缩和膨胀过程之间存在一个交替的振荡过程,两个过程具有不对称的属性分布,膨胀过程具有比压缩过程更大的轴向压力梯度.当充气压力较低时,循环时间对冷端温度的影响很小,但是当充气压力高于20 bar时,冷端温度对时间较为敏感,随着时间的减少,冷端温度进一步降低,而冷端瞬时平均温度随着充气压力的增加而增加.另外,压比随着时间的减少而增加,并且明显不受充气压力的影响,但它会在MPT的轴向上产生较大的温度梯度.综上所述,在热端使用不同形式的换热器和调相元件会释放或回收额外的声功率.固定工作模式和尺寸参数的MPT具有最佳频率,可以在冷端获得最低的空载温度.仿真结果增进了对脉冲管制冷机的认识,并为微通道脉冲管制冷机的优化设计提供理论支持.  相似文献   

5.
依据热力学非对称理论对脉冲管制冷机冷端的热力学过程进行分析 ,对脉冲管制冷机制冷功率的提高提出了改进方案 ,搭建了单级低频大功率脉冲管制冷机的实验台 ,在实验中首次采用新型的填料烧结型换热器作为脉冲管的冷头 ,对这种换热器的效率在不同实验条件下进行了计算 ,并通过实验验证了这种新型换热器在脉冲管制冷机中应用的可行性。实验表明 :改进冷端换热器是提高脉冲管制冷机制冷效率的关键问题。在使用烧结换热器的单级脉冲管制冷机实验台上 ,采用输出功率 3k W的压缩机在 80 K时得到了 35W的制冷量 ,在效率上属国内领先水平。  相似文献   

6.
同轴式脉冲管制冷机具有结构紧凑、与器件耦合简单的优点,在实际应用中得到了越来越广泛的采用.本文对一台经理论优化设计的高频同轴脉冲管制冷机进行了实验研究,采用自制的直线压缩机驱动,惯性管/气库作为调相机构,在输入电功150 W、冷端温度为77 K时得到了9.86 W的制冷量,相对卡诺效率达到18.4%,这是目前同轴脉冲管...  相似文献   

7.
实验测量了小孔阀门、不同长度长颈管和变截面长颈管做调相机构的高频脉冲管制冷机的频率特性,通过冷端相位差和压力波幅值的变化分析了不同调相方式对制冷性能的影响规律,并在实际制冷机的降温实验中进行了验证.  相似文献   

8.
本文利用Fluent软件对惯性管进行数值模拟,计算采用二维层流的数值模型,得到惯性管入口处质量流量与压力波之间的相位及惯性管内部的压力波幅值和质量流量幅值的变化,给出不同频率及惯性管尺寸对惯性管入口处压力波与质量流量之间的相位的影响.通过分析并计算得到脉冲管冷端质量流量,进行设计计算.  相似文献   

9.
1前言脉冲管制冷机已基本达到了实用化的程度。但在理论方面,仍有较多问题存在,其中双向进气型脉冲管制冷机内的环流问题成为一个讨论的热点和难点。1991年朱绍伟进行双向进气方案的实验验证时[1],已经提到了环流问题,即进出双向阀门的流量不等造成的冷端温度...  相似文献   

10.
提高脉管制冷机的制冷性能是其研究的一个重要目标,除了回热器和调相机构,换热器也是其中重要的部件,特别是冷端换热器,对其制冷性能有着很大的影响。基于100 Hz直线型脉管制冷机,本文对冷端换热器的长度和气体间隙进行了模拟和实验研究。在本研究中发现,当冷端换热器长度在其气体波动幅值附近时,系统性能最佳;在保持换热面积相同时,适当增大气体间隙,有利于提高制冷性能。  相似文献   

11.
采用热声发动机驱动的脉管制冷系统,消除了系统中的机械运动部件,具有结构简单、运行可靠和环境友好等优点。文中基于Regen 3.2软件,设计并制作了一台采用热声驱动的单级脉管制冷机。该制冷机采用双向进气结构,脉管和回热器为U型布置。初步实验研究中,以氮气为工质,该脉管制冷机获得了117.5K的最低制冷温度,低于氦的临界点温度126.19K;以氦气为工质,目前获得了83.5K的最低制冷温度。  相似文献   

12.
单级高频脉冲管制冷机研究   总被引:1,自引:1,他引:1  
采用单级高频脉冲管制冷机获得低于30 K的制冷温度是脉冲管应用的一个新方向.本文介绍了一套获得了26 K最低制冷温度的单级高频脉冲管制冷机,这是无多路旁通的单级高频脉冲管制冷机获得的最低温度.实验表明,即使对于惯性管作为主要调相结构的高频情况,双向进气方案在进一步调相和降低温度方面仍有很大作用.该工作为单级高频脉冲管制冷机在30~40 K温区的应用奠定了基础.该实验结果和模拟分析结果基本相符.通过和二级制冷机的比较说明了单级制冷机的优势,即较大的制冷量斜率.  相似文献   

13.
本文研制了一台可以用于低温超导磁体冷却的液氦温区分离型二级脉管制冷机.单独测试第一级最低达到了13.8K,是单级脉管制冷机最低制冷温度新纪录;在40K温度下具有55.9W制冷量,可望在高温超导磁体冷却方面获得广泛应用.使用单压缩机单旋转阀驱动二级脉管,二级最低温度达到了2.6K,在4.2K下有590mW制冷量,同时一级在36.7K有15W的制冷量,满足小型低温超导磁体冷却的要求.  相似文献   

14.
回热器是脉管制冷机的关键部件之一,其效率对脉管制冷机性能有很大影响。铅丸是常见的蓄冷材料,通常用于回热器的低温端。本文测试和分析了不同品质的国产铅丸和进口铅丸对单级G-M型脉管制冷机性能的影响。采用额定功率为6.0 kW的压缩机驱动,使用进口铅丸脉管制冷机最低制冷温度达12.9 K,这是当前单级脉管制冷机达到的最低制冷温度;40 K时的最大制冷量为57.4 W。使用国产铅丸最低制冷温度为13.6 K,40 K时的最大制冷量为55.9 W。本文对低温制冷机蓄冷材料选择具有一定的参考价值。  相似文献   

15.
脉冲管制冷机在更高频率下操作有利于系统体积的减小,同时也提高了能量的密度。本文首先介绍了直线压缩机驱动直线型脉冲管制冷机的整机计算模型,对于惯性管进行了湍流修正后的阻抗相位分析,结果表明频率越高,湍流影响越小。在100Hz下,整机取得了12.4W的制冷量,冷头温度到达31.8K,整机相对卡诺效率18.4%,已经十分接近...  相似文献   

16.
脉管制冷机没有低温下的运动部件,具有运行可靠、低振动、低磁噪声以及长寿命等显著优点,可望在空间技术、超导、低温电子等领域获得广泛应用.文中介绍自行研制的一台20K-40K温区大功率单级脉管制冷机.初步实验结果表明,该制冷机的最低制冷温度为15.4K,在20K、30K和40K的制冷量分别达到6.1W,21.3W和37.3W.该制冷机为进一步的超导应用奠定了良好基础.  相似文献   

17.
热声发动机驱动的脉管制冷机是一种完全无运动部件的低温制冷机,具有非常好的应用前景,本文介绍了本实验室在这方面取得的最新进展。首先我们对驻波热声发动机进行了改进设计,提高了其驱动压比,用氦气作为工质最大压比达到了1.15。在此基础上我们用其驱动同轴双向进气小孔型脉管制冷机,通过调整热声发动机的振荡频率,使之与脉管达到匹配,最终达到了84.3K的最低制冷温度,这也是目前用驻波热声发动机驱动脉管所达到的最低制冷温度。同时,在此实验过程中,一些抑制跳频的方法也得到了实验验证。  相似文献   

18.
为模拟和动态显示工作在液氦温区的两级4K脉冲管制冷机内部工作过程和参数变化规律,发展了一种新的欧拉法-拉格朗日法数值计算模型。采用拉格朗日方法,直接跟踪脉冲管中气体微元随周期性压力波动的具体运行轨迹;采用欧拉法,直接模拟蓄冷器内部的动态参数变化。本文简单介绍该模型,并模拟了一典型两级4 K脉冲管制冷机各参数的变化情况,分析了多层磁性蓄冷材料对制冷机性能的影响情况。  相似文献   

19.
并联双阀双向进气模式是采用了两个并联排列、箭头指示方向相反的阀门来替代单一阀门的双向进气模式,可对脉管制冷中的直流进行有效控制,是使脉管制冷机单级情况下达到低于20 K温区的有效手段。本文介绍了一台自行研制的采用并联双阀双向进气模式的单级脉管制冷机,该制冷机在6 kw压缩机的驱动下可获得19.6 K的无负荷制冷温度, 在39.2 K时有20.1 W的制冷量,同时给出了并联双阀和频率等参数对脉管制冷机性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号