首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium oxide (MgO) single crystal is an important substrate for high temperature superconductor, ferroelectric and photoelectric applications. The function and reliability of these devices are directly affected by the quality of polished MgO surface because any defect on the substrate, such as pit or scratch, may be propagated onto device level. In this paper, chemical mechanical polishing (CMP) experiments were conducted on MgO (1 0 0) substrate using slurry mainly comprised of 1-hydroxy ethylidene-11-diphosphonic acid (HEDP) and silica or ceria particles. Through monitoring the variations of the pits topography on substrate surface, generation and removal mechanism of the pits were investigated. The experimental results indicate that the pits were first generated by an indentation or scratch caused by particles in the slurry. If the rate of chemical etching in the defect area is higher than the material removal rate, the pits will grow. If chemical reaction in the defect area is slower than the material removal rate, the pits will become smaller and eventually disappear. Consequently, these findings may provide insight into strategies for minimizing pits during CMP process.  相似文献   

2.
SrRuO3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO3 thin films deposited on the (0 0 1) LaAlO3 substrates, and different from those deposited on (0 0 1) SrTiO3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.  相似文献   

3.
Tetragonal lead titanate (PbTiO3, PT) thin films are grown on (1 0 0) MgO substrate by pulsed-laser deposition (PLD) for expected applications in integrated optics. The realisation of outstanding and reliable devices into integrated circuits requires sufficient mechanical resistance despite that the obtained PT films display interesting waveguiding properties associated with low optical losses. Two mechanical properties characteristic of elasticity and hardness of PT films are studied. The elastic modulus (E or Young's modulus) and the hardness (H) are measured by the nanoindentation technique. These mechanical properties are correlated to the crystalline quality of PT/MgO thin films. The films show epitaxial relationship with the MgO substrate and the orientation of crystallites perpendicularly to the surface substrate may be the consequence of a growth process along c-axis, a-axis or both. Differences on curves plotting hardness and elastic modulus as a function of indentation depth are observed as the curves are less dispersed for the films mainly c-axis oriented.  相似文献   

4.
Epitaxial Fe3O4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe3O4/MgO(0 0 1) films. For the Fe3O4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe3O4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe3O4-on-Fe film system.  相似文献   

5.
Well-crystallized MgO nanosheets have been prepared with MgB2 as a precursor without any catalyst via a simple chemical vapor deposition (CVD) method. The nanosheets are grown parallel to (2 0 0) plane according to the high-resolution transmission electron microscopy profiles. At the same time, MgO nanowires are formed in the different area of substrate, which is the result of the difference in local super-saturation. Consequently, we propose that the growth mechanism depends on the surface energy and the local super-saturation in the system.  相似文献   

6.
Low-temperature growth (600 °C) of α-Al2O3 coatings on the stainless steel substrate by double glow plasma technique was achieved. The compositions and microstructures of the coatings prepared at different oxygen flow rates were characterized, respectively, by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. A phenomenological mechanism for the formation of the Al2O3 ceramic coatings during the oxidation process was proposed on the basis of the experimental results. It was obvious that the oxygen flow rates had a great effect on the surface structure of the prepared Al2O3 coatings. The dense and smooth Al2O3 coatings were prepared at the oxygen flow rate of 15 sccm. In addition, the correlations between the mechanical properties of Al2O3 coating and oxygen flow rates were also discussed. The coating prepared at 15 sccm oxygen flow rate exhibited the best mechanical properties with a maximum hardness of 31 GPa and elastic modulus of 321 GPa. The corresponding critical load of scratch adherence for this sample was 47 N.  相似文献   

7.
The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al2O3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al2O3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al2O3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al2O3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.  相似文献   

8.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

9.
The diffusion of Mg in pulsed laser deposited K(Ta0.65Nb0.35)O3 thin films epitaxially grown on (1 0 0) MgO single crystal substrate were investigated by Auger electron spectroscopy (AES). A diffusion of Mg from the substrate into the whole thickness (400 nm) of the as-deposited K(Ta0.65Nb0.35)O3 films was observed with an accumulation of Mg at the surface. Ex situ post-annealing (750 °C/2 h) has led to a homogeneous distribution of Mg in all the ferroelectric coating. This strong reaction between film and substrate promotes a doping effect, responsible for the reduction of K(Ta0.65Nb0.35)O3 dielectric losses in comparison with films grown on other substrates.  相似文献   

10.
Au/NiCr/Ta multi-layers were deposited on Al2O3 substrate by magnetron sputtering and plating. The effect of plating technique on magnetron sputtering film in residual stress, crystal orientation and scratch resistance behavior was investigated. The all magnetron sputtering and plating films were highly textured with dominant Au-(1 1 1) orientation or a mixture of Au-(1 1 1) and Au-(2 0 0) orientation and the (1 1 1)/(2 0 0) intensity ratio were increased after plating. The residual stress in magnetron sputtering films at different substrate temperature was tensile stress with 155-400 MPa and it decreased approximately to 50 MPa after plating. The scratch resistance could be affected by the film thickness, and it increased approximately linearly with the increase of the thickness of metallic films after plating.  相似文献   

11.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

12.
This paper investigates the mechanical properties at the interface of the coating-substrate system, which comprises the electroless nickel-phosphorus (Ni-P) coating and the aluminum matrix composite substrate reinforced by the silicon carbide particles (SiCp/Al), and is used for the space mirror. To estimate the adhesion of Ni-P coating on SiCp/Al substrate, the scratch adhesion testing has been performed by drawing a spherically tipped diamond indenter with a radius of 200 μm over the coated surface. The influence of the coating thickness on the interfacial stress induced by the inertial accelerations, temperature gradients and thermal soaks has been evaluated by simulation analysis based on the finite element method. The results of the scratch testing indicate that the adhesion strength of Ni-P coating to SiCp/Al composite is more than 3.0 GPa. Compared the maximum value of the interfacial stress obtained by simulation analysis with results of the scratch testing, it is can be seen that the mirror has enough safety margin. Furthermore, the most significant conclusion that can be drawn from this work is that the coating thickness should not exceed 45 μm in order to ensure the performance and reliability of Ni-P coating and SiCp/Al substrate system for space applications.  相似文献   

13.
In this work, SmCo5 thin films are deposited on single crystal MgO (1 0 0) and amorphous glass substrates with a Cr underlayer at 400 °C by sputtering. A comparison study shows that the microstructures and magnetic properties are different in the two SmCo5 films on the MgO (1 0 0) and glass substrates, respectively. An epitaxial growth of Cr-(2 0 0)〈1 1 0〉/SmCo5-(1 1 2¯ 0)〈0 0 0 1〉 is achieved on the MgO (1 0 0) single crystal substrate with an average grain size of 20 nm for SmCo5. On the amorphous glass substrate, no significant crystallographic texture is found in the Cr underlayer. After the deposition of SmCo5, a weak texture of (1 1 2¯ 0) is observed with an average grain size of 8 nm. High remanence ratio value in this film is probably due to strong exchange coupling. Both SmCo5 films show high in-plane coercivity, high in-plane anisotropy and remanence enhancement.  相似文献   

14.
The adsorption of sulfur dioxide molecule (SO2) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (Fs-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (Eads) of SO2 molecule (S-atom down as well as O-atom down) in different positions on both of O−2 and Fs sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO2 are analyzed in terms of the Eads, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O−2 site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the Fs-site of MgO substrate surfaces. Generally, the SO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing Fs-center.  相似文献   

15.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

16.
We report stress dependence of growth characteristics of epitaxial γ-Na0.7CoO2 films on various substrates deposited by pulsed laser deposition method. On the sapphire substrate, the γ-Na0.7CoO2 thin film exhibits spiral surface growth with multi-terraces and highly crystallized texture. For the γ-Na0.7CoO2 thin film grown on the (1 1 1) SrTiO3 substrate, the nano-islands of ∼30 nm diameter on the hexagonal grains are observed. These islands indicate that the growth mode changes from step-flow growth mode to Stranski-Krastanow (SK) growth mode. On the (1 1 1) MgO substrate, the large grains formed by excess adatoms covering an aperture between hexagonal grains are observed. These experimental demonstrations and controllability could provide opportunities of strain effects of NaxCoO2, physical properties of thin films, and growth dynamics of heterogeneous epitaxial thin films.  相似文献   

17.
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process.  相似文献   

18.
The sapphire substrates are polished by traditional chemical mechanical polishing (CMP) and ultrasonic flexural vibration (UFV) assisted CMP (UFV-CMP) respectively with different pressures. UFV-CMP combines the functions of traditional CMP and ultrasonic machining (USM) and has special characteristics, which is that ultrasonic vibrations of the rotating polishing head are in both horizontal and vertical directions. The material removal rates (MRRs) and the polished surface morphology of CMP and UFV-CMP are compared. The MRR of UFV-CMP is two times larger than that of traditional CMP. The surface roughness (root mean square, RMS) of the polished sapphire substrate of UFV-CMP is 0.83 Å measured by the atomic force microscopy (AFM), which is much better than 2.12 Å obtained using the traditional CMP. And the surface flatness of UFV-CMP is 0.12 μm, which is also better than 0.23 μm of the traditional CMP. The results show that UFV-CMP is able to improve the MRR and finished surface quality of the sapphire substrates greatly. The material removal and surface polishing mechanisms of sapphire in UFV-CMP are discussed too.  相似文献   

19.
MgO ultrathin films were grown on Si(1 0 0) substrates as buffer layers for the growth of ferroelectric BaTiO3 thin films by laser molecular beam epitaxy (L-MBE). The deposition process of MgO buffer layers grown on silicon was in situ monitored by reflection high-energy electron diffraction (RHEED). The structure of BaTiO3 films fabricated on MgO buffers was investigated by X-ray diffraction. Biaxially textured MgO was obtained at high laser energy density, but when the laser energy was lowered, MgO buffer was transformed to the form of texture with angular dispersion with the increase of the film thickness. BaTiO3 films grown on the former buffer were completely (0 0 1) textured, while those on the latter were (0 0 1) preferred orientated. Furthermore, the fabricated MgO buffers and BaTiO3 films had atomically smooth surface and interface. All these can reveal that the quality of textured MgO buffer is a key factor for the growth of BaTiO3 films on silicon.  相似文献   

20.
This paper describes a special method of laser-based deposition to synthesize palladium-ceramic composite membranes. Thin film Pd was deposited on a ceramic substrate by Nd-YAG laser irradiation of coating precursor PdCl2 on γ-alumina substrate. The parameters of the laser processing technique were optimized to synthesize metal-ceramic composite membranes. The physical and chemical characteristics of Pd coated γ-alumina membranes were studied and compared with various other alumina membranes referenced in the literature. Hydrogen permeation experiments were performed in a CO + CO2 + CH4 + H2 environment under typical catalytic steam gasifier exit conditions. The Pd-ceramic composite showed good mechanical and thermal stability and resulted in a hydrogen permeability flux of about 0.061 mol/m2 s. The activation energy of the Pd membrane was found to be 5.39 kJ/mol in a temperature range of 900-1300 °F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号