首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular dynamics simulations are used to investigate the shape and structure evolution of single platinum clusters of cubic and spherical shape containing 256 and 260 atoms, respectively, deposited on a static graphite substrate. The evolution is monitored at variable temperature, and as a function of metal-substrate interactions at constant temperature. The Pt-Pt interactions are modelled with the many-body Sutton-Chen potential, whereas a Lennard-Jones potential is used to describe the Pt-C interactions. Heating and cooling curves calculated between 200 K and 1800 K are used to determine solid-solid and solid-liquid transitions. Structural changes are detected through analyses of density profiles and diffusion coefficients. A clear analogy is observed between temperature-induced wetting phenomena and those resulting from enhancement of the metal-substrate interactions.  相似文献   

2.
Melting evolution and diffusion behavior of vanadium nanoparticles   总被引:2,自引:0,他引:2  
Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 (diameters around 2–9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2–3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells.  相似文献   

3.
Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.  相似文献   

4.
Metallic coatings of many types can be applied to steel to provide outstanding, long-term corrosion protection. A thin Al film is studied at an Fe substrate by the molecular dynamics method at temperatures ranging from 300 K to 1173 K. Al atoms are found to penetrate the Fe matrix at a temperature of 873 K. The potential energy of the system changes step-like at a temperature of 1173 K. At such temperature mean square atomic displacement significantly changes. The behaviors of the Al and Fe diffusion coefficients are mainly determined by the temperature dependence of the diffusion activation energy.  相似文献   

5.
Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.  相似文献   

6.
Modern engineering applications are in need for technologies of nanostructures and nanofilms with controllable properties. The detection of these structures requires methods of atomic research, among which are molecular dynamics techniques, Monte-Carlo simulation, and ab initio calculation. The most efficient method to deal with systems of about several thousands of atoms is molecular dynamics simulation. We used this method to analyze the formation of nanolayers on a Cu substrate in vapor deposition of Cu atoms. It is shown that the film deposited on the substrate surface replicates the crystalline structure of the substrate. It is found that at low deposition temperatures, the deposited layer reveals a great quantity of vacancies and vacancy clusters (nanopores). It is demonstrated that increasing the substrate temperature in metal vapor deposition ensures a more perfect lattice in the nanocoating, and the cohesive energy of atoms in the nanolayer thus approximates experimental values. It is also found that the increase in substrate temperature in the process causes Young’s modulus and elastic limit to tend to the values of a perfect crystal.  相似文献   

7.
夏冬  王新强 《物理学报》2012,61(13):130510-130510
基于EAM原子嵌入势, 对临界尺寸下的自由Pt纳米线的奇异结构和熔化行为进行分子动力学模拟. 模拟结果显示, 超细Pt纳米线的熔点随径向尺寸和结构的不同而发生明显改变; 引入林德曼因子, 令其临界值为0.03, 以此得到对应熔点值大小与通过势能-温度变化曲线找出的一致, 又比较了纳米线各层粒子平均林德曼指数的大小, 对各层纳米结构的热稳定性进行定量标度; 综合分析发现螺旋结构纳米线的熔化从内核开始, 而多边形结构的纳米线的熔化从外壳层开始.  相似文献   

8.
Molecular dynamics simulations were conducted for a cubic Cu cluster supported on a graphite bilayer. The Sutten–Chen and Lennard–Jones potentials were used for metal–metal and metal–graphite interactions, respectively. Heating and cooling processes were performed by NVT simulations at different temperatures in the range 200 to 1800?K. The melting point was identified on the basis of caloric and heat capacity curves. The calculated melting point was 770?K, far below the bulk melting point of crystalline copper. Several phenomena such as the appearance of a hysteresis (irreversibility) in caloric curves, surface melting, and cluster-induced surface wetting were justified from the results. The simulation of cluster in the presence of gas atmosphere showed that the CO gas is adsorbed more than H2 and it has a greater impact on the cluster's structure.  相似文献   

9.
The atomic structure of a two-dimensional graphite film formed on the Ir(111) surface is studied. In order to weaken the interaction of the graphite film with the metal surface, cesium atoms are intercalated beneath the film. The studies by scanning tunneling microscopy in ultrahigh vacuum provide support for the formation of a continuous graphite layer, with the regular arrangement of carbon atoms at extended surface regions. From comparison of the roughness of the film and that of the substrate, it follows that the spacing between the film and metal surface varies within the limits of 1 nm. Characteristic structural defects of configuration (5, 7) are detected in the film.  相似文献   

10.
Silver clusters have been produced by magnetron sputtering in a gas aggregation nanocluster source. Clusters are size selected using a quadrupole mass filter (3–8 nm) or by varying the aggregation tube length (9–20 nm) of the nanocluster source. Mass selected clusters are deposited on a Si(100) substrate at different bias voltages and are characterized by atomic force microscopy. We observe a significant flattening of clusters on the surface due to the increase of impact energy as a result of increasing substrate bias voltage. The behavior of lattice parameters for size selected clusters are investigated by X-ray diffraction. All measured lattice constants exhibit a tensile strain; it is found that the lattice constant slightly increases with increasing cluster size up to a size of 12 nm and then decreases. The melting temperature of deposited clusters is found to be size-dependent and significantly lower than for bulk material, in agreement with theoretical considerations.  相似文献   

11.
A self-consistent statistical method is used to describe size effects on melting of free nanocrystals. The melting transition is assumed to be directly related to evolution of high-temperature instability of the phonon subsystem of the crystal, caused by strong anharmonicity of atomic vibrations. We show that depression of the melting temperature of small free particles is mainly due to presence of surface atoms which are bound to smaller numbers of atoms than those of the interior. The melting temperatures of spherical nanocrystals of Ar and Au were calculated as functions of the inverse of their radii and compared with experimental and molecular dynamics data.  相似文献   

12.
卢敏  陈巧 《物理实验》2007,27(12):11-14
采用分子动力学方法和嵌入原子法(EAM)多体势函数,模拟研究了银纳米团簇在不同温度直到熔化过程中的结构变化,得到了体系能量和热容量随温度的变化关系.结果显示:银纳米团簇在临近熔点附近出现了负热容现象.研究了弛豫后银纳米团簇的稳态结构变化及其在不同时刻结构的演变过程.结果表明:产生负热容现象的主要原因是纳米团簇在熔点附近,结构发生了巨大的变化,形成由{111}和{100}面围成的结构十分稳定和能量更低的多面体.  相似文献   

13.
A phase transition leading to the transformation of a graphene layer into a multilayer graphite film at the surface of a carbonized metal has been experimentally studied on the atomic level under ultrahigh-vacuum conditions. It has been shown that this process is governed by dynamic equilibrium between edge atoms of graphene islands and a chemisorbed carbon phase, two-dimensional carbon “gas,” and is observed in the temperature range of 1000–1800 K. The features of the phase transition at the surfaces Ni(111), Rh(111), and Re(10-10) are similar, although the specific kinetic characteristics of the process depend on the properties of the substrate. It has been shown that change in the emissivity of the substrate after the formation of a multilayer graphite film increases the rate of the phase transition and leads to a temperature hysteresis.  相似文献   

14.
张英杰  肖绪洋  李永强  颜云辉 《物理学报》2012,61(9):93602-093602
纳米团簇负载到基体上的结构演化和热稳定性是其走向技术应用的关键. 本文用分子动力学结合嵌入原子方法模拟了具有二十面体初始结构的Co281Cu280 混合双金属团簇在Cu(010)基体上的熔化过程, 考察了基体的Cu原子可以自由移动(自由基体)和固定(固定基体)两种条件对负载团簇熔化的影响. 发现基体条件对团簇的熔化有明显的影响. 在自由基体上团簇原子的温度-能量曲线存在明显的团簇熔化时的能量突变点, 熔点为1320 K, 低于固定基体上团簇的熔点1630 K. 在升温过程中团簇的二十面体结构会在基体表面发生外延生长. 外延团簇随着温度增加发生表面预熔, 预熔原子会逐渐向基体表面扩散形成薄层, 直至完全熔化. 自由基体上团簇原子的嵌入行为会使原子的分布状态产生不同于固定基体上的演变.  相似文献   

15.
Scanning tunneling microscopy (STM) at liquid helium temperature is used to image potassium adsorbed on graphite at low coverage (≈0.02 monolayer). Single atoms appear as protrusions on STM topographs. A statistical analysis of the position of the atoms demonstrates repulsion between adsorbates, which is quantified by comparison with molecular dynamics simulations. This gives access to the dipole moment of a single adsorbate, found to be 10.5±1 D. Time-lapse imaging shows that long-range order is broken by thermally activated diffusion, with a 30 meV barrier to hopping between graphite lattice sites.  相似文献   

16.
王永亮  张超  唐鑫  张庆瑜 《物理学报》2006,55(8):4214-4220
采用嵌入原子方法的原子间相互作用势,利用准静态分子动力学模拟研究了Cu原子在Cu(001)表面吸附所导致的基体晶格畸变以及对其附近的另一个吸附原子自扩散行为的影响.研究结果表明,吸附原子的存在可以导致多达10层的Cu基体晶格产生畸变.两个吸附原子所产生的晶格畸变应力场之间的相互作用,可以导致吸附原子运动活性的增加.通过比较同一路径上往返跳跃扩散势垒的差异发现,在原子间相互作用势的有效距离之外,两个吸附原子的扩散行为可以认为是存在晶格畸变应力场相互作用的两个独立吸附原子的扩散;在原子间相互作用势的有效距离之 关键词: 表面吸附原子 晶格畸变 表面二聚体 扩散  相似文献   

17.
The results of optimization of the atomic and electronic structure of strained silicon clusters Si51 on a germanium substrate are presented. The interaction of boundary nanocluster atoms with the substrate is studied. The effect of strain and impurities on the distribution of electronic states is analyzed.  相似文献   

18.
《Physica A》2005,357(2):250-281
Surface diffusion is a subject of basic importance for understanding mass transport phenomena in surface and nano science. In the particle aspect of surface diffusion of single atoms and simple molecules, information of interest is the detail atomic mechanisms and the activation energy of various atomic processes, and also the binding energy of atoms at different surface sites. In the absence of an external force, atoms will perform random walk without a preferred direction. When an atom is subjected to an external force, or when a chemical potential gradient exists, it will move preferentially in the direction of the force, or in the direction of decreasing chemical potential, thus the random walk becomes directional. Using atomic resolution microscopy, it is now possible to observe random walk diffusion of atoms, molecules and atomic clusters directly as well as to study the dynamic behavior of atoms as perturbed by the electronic interactions of the surface in great detail. Here, methods of studying quantitatively the particle aspect of surface diffusion and how it affects the dynamic behavior of the surface are very briefly reviewed.  相似文献   

19.
The deposition growth and annealing behaviors of Cu atoms onto Cu(0 0 1) are investigated in atomic scale by molecular dynamics (MD) simulation. The results indicate that the film grows approximately in a layer-island mode as the incident energy is from 1 to 5 eV, while surface intermixing can be significantly observed at 10 eV. The surface roughness of the film decreases with increasing the incident energy, and the film after annealing becomes smoother and more ordered. These phenomena may be attributed to the enhanced atomic mobility for higher incident energy and thermal annealing. It also indicates that atomic mixing is more significant with increasing both the incident energy and substrate temperature. In addition, the peak-to-peak distances of radial distribution function (RDF) clearly indicate that the films before and after annealing are still fcc structure except for that at the melting temperature of 1375.6 K. After annealing, the film at the melting temperature returns to fcc structure instead of amorphous. Moreover, the residual stress and Poisson ratio of the film are remarkably affected by the thermal annealing. Furthermore, the density of thin film is obviously affected by the substrate temperature and annealing process. Therefore, one can conclude that high incident energy, substrate temperature and thermal annealing could help to enhance the surface morphology and promote the microstructure of the film.  相似文献   

20.
Monte Carlo simulations with second-moment approximation of tight-binding potential were applied to study the sintering dynamics and thermal stability for novel configurations of Ag clusters. Simulations under elevated temperatures utilizing various configurations indicated that sintering processes were strongly affected by temperature and initial design configurations. Ag clusters re-aligned themselves at the onset of sintering, forming clear necks of varying stabilities and different matter diffusion routes between clusters due to differences in initial design configurations. Notably, different Ag cluster design configurations displayed variable melting temperatures. The methodical simulation of design configurations can elucidate strategies to maintain desirable nanocluster structure during sintering processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号