首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
使用FieldSpec 3(350~2 500 nm)光谱仪野外测得新疆富蕴地区季节性积雪光谱,与冰对比得出了该地区典型季节性积雪光谱特征,并分析了太阳高度角、 坡度、 雪深、 污染物浓度对积雪光谱的影响。研究结果表明:积雪反射率在可见光波段较高,随波长的增加逐渐减小;随着太阳高度角的增大积雪反射率逐渐降低,且在1 090和1 300 nm对太阳高度角的变化敏感;坡度的存在使积雪反射率大幅上升;在一定深度范围内,积雪反射率随雪深的增加而增大,在400~500和1 250~1 320 nm,反射率对雪深变化敏感;随着污染物的增加,积雪反射率在可见光波段明显下降,且波峰波谷趋于平缓。季节性积雪的光谱测量和分析工作对于积雪参数的监测和反演具有重要意义。  相似文献   

2.
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4 Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数--归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26 d起800~1 330 nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700 nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368 nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33 d最高。建议用400~700和760~1 368 nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750 nm区间出现两个“峰”,通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740 nm区间冠层一阶微分光谱值在开花期最高,开花后10 d的一阶微分光谱值最低。在开花期至开花后10 d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33 d N3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33 d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33 d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数--归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。  相似文献   

3.
荒漠地区由于气候干燥,降水稀少,水分常成为制约植被生长的因素之一,水分胁迫对植物长势和产量的影响比任何其他胁迫都要大。随着高光谱技术的发展,国内外已有众多学者利用高光谱数据研究植被遭受胁迫作用,然而这些研究对象多集中于甜菜、棉花、玉米、水稻等作物,针对干旱区盐生植被遭受胁迫作用的研究较少。梭梭作为荒漠、半荒漠地区的典型盐生植被之一,具有极高的经济和生态效益。选择梭梭作为研究对象,培育一年生梭梭,并设置三个水分梯度,形成受不同水分量胁迫的梭梭。使用原始光谱、红边位置参数,结合植被指数及二维相关光谱研究其叶片光谱特征,为干旱区利用高光谱遥感监测盐生植被提供借鉴。结果表明:(1)分析梭梭叶片反射光谱曲线发现,在可见光至中红外各波段范围内,受不同水分量胁迫作用的梭梭叶片光谱反射率有显著差异。在可见光(350~610 nm)波段,各水分处理的梭梭叶片反射率依次为100 mL>500 mL>200 mL,这是由于100和200 mL水分促进梭梭内部叶绿素合成,使该波段反射率降低,而过多的水分(500 mL)对梭梭内部的叶绿素合成没有更大的促进作用。在红光区(611~738 nm),随着水分量的增多,受不同水分量胁迫的梭梭叶片光谱反射率依次减小。在738~1 181和1 228~1 296 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:200 mL>100 mL>500 mL;在1 182~1 227 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:100 mL>200 mL>500 mL。这是由于植被细胞结构对近红外区域的反射率影响较大,因而受不同水分胁迫作用的梭梭叶片光谱反射率有显著差异。在1 300~1 365和1 392~1 800 nm波段,受各水分胁迫作用的梭梭叶片反射率为:100 mL>200 mL>500 mL。这表明在500 mL水分胁迫量范围内,水分越多,叶子的细胞液、细胞膜对水分的吸收能力越强,使得反射率下降。通过对原始光谱求取一阶导数并提取红边位置参数发现,各水分处理下的梭梭叶片一阶微分光谱曲线中红边位置未发生移动。这是由于梭梭在长期的干旱环境影响下,形成了特殊的适应机制,水分对其红边位置影响不敏感。(2)选取若干植被指数分析各水分处理下的梭梭光谱指数变化。当水分胁迫量由100 mL增至200 mL时,WI/NDWI,MSI和NDII指数值变化显著,可用于研究水分胁迫下梭梭的光谱特征。(3)使用二维相关光谱技术分析受各水分胁迫作用的梭梭光谱特征,得出在100 mL水分胁迫下,在536,643,1 219和1 653 nm波段处,吸收峰对水分的微扰敏感;在200 mL水分胁迫下,在846和1 083 nm波段处,吸收峰对水分的微扰敏感;在500 mL水分胁迫下,在835和1 067 nm波段处,吸收峰对水分的微扰敏感。总之,在近红外波段,与100 mL水分量相比,梭梭受200和500 mL水分量胁迫时,吸收峰对水分的微扰敏感度上升。由100 mL水分胁迫下梭梭的二维同步相关谱图可知,1 044和1 665 nm,1 072和903 nm,903和1 264 nm,1 230和1 061 nm波段处形成正交叉峰,表明这些波段处光谱强度随水分的干扰同时变化。  相似文献   

4.
积雪中的黑碳气溶胶粒子会导致积雪光谱反射率显著下降,进而引起的气候辐射变化会推迟或提前积雪融化时间,严重影响了干旱区地表径流特征、区域水循环过程,由此引起的干旱区生态水文问题也越来越受到关注。2018年1月在新疆北疆地区开展积雪中气溶胶粒子观测实验,借助ASD地物光谱仪、Snow Folk积雪特性仪与HR-1024外场分光辐射度计等仪器获取原始积雪光谱数据与其他积雪参数,应用Snow,Ice,and Aerosol Radiation model(SNICAR)模型模拟了不同雪粒径下、不同太阳天顶角、不同Black Carbon(BC)浓度下的积雪光谱反照率变化状况,讨论了BC、雪粒径在不同光谱范围内敏感性,结果表明:太阳天顶角对雪面光谱反照率的影响在近红外波段比其他波段表现得更明显,在积雪光谱曲线中太阳天顶角从0°变化到80°,可见光波段600 nm处光谱反照率升高了0.045,近红外波段1000,1200和1300 nm处光谱反照率分别升高了0.16,0.225和0.249;在天顶角为60°时,雪粒径从100μm增大到800μm,对应的光谱反照率减少量最大可达到0.15,且100~300μm范围内的雪粒径比400~800μm范围内的引起光谱反照率的下降量明显增大,雪粒径的增大能使吸光性颗粒物的光吸收效应增强;随着BC浓度的增加,积雪反照率会显著下降,且不同浓度的BC对积雪的反照率的差值不同,随着BC浓度的增加,反照率的差值量越来越小。不同的BC浓度在近红外波段对光谱反照率影响较小,影响较大的范围主要集中可见光波段,在光谱800和1100 nm处,5μg·g-1的BC浓度使光谱反照率减小了0.13和0.04,5μg·g-1的BC可使350与550 nm处的光谱反照率减小0.25与0.23;比较不同粒径下,BC浓度对积雪光谱宽波段反照率的减少情况可发现,在BC存在的情况下,雪粒径的增加会增大BC的光吸收效应,且浓度越高,吸收增加的越多;从光谱指数角度表明BC在可见光波段350~740 nm比较敏感,相关系数较高;雪粒径在近红外波段1100~1500 nm比较敏感,尤其在1000与1300 nm左右,BC与雪粒径在积雪光谱曲线中的敏感波段相关性都较高,R 2高达0.9以上;最后将模型模拟的积雪反照率与实测数据进行验证对比,R 2为0.738,模拟效果较好,可为干旱区积雪光谱反照率的研究奠定数据基础。  相似文献   

5.
反射光谱分析可为植物叶片生理学过程、叶片表面及内部生化组分、结构特征等提供丰富信息。本文以转基因大麦及其原始栽培种为材料,基于单叶反射光谱检测研究了转基因大麦的反射光谱特征及指数的变化。研究结果表明,将不同大麦叶片反射率配对求得反射率比值曲线易于探查出不同大麦品系间反射光谱差异,且转基因大麦与传统对照差异较大的区域主要集中在650~700nm的红谷及红边位置附近,该波段的光谱反射率可能对外源基因的插入扰动反应敏感;而在550nm附近的绿峰及750nm以上近红外区的反射率基本无明显变化。反射光谱指数λRE,mND,SIPI,RRed/RGreen,PRI及NIRR800的差异性变化呈现出时间特性且取决于品系。如上述指数显著变化将意味着植物光合生理过程、功能及状态发生改变。  相似文献   

6.
植被指数是表征植被覆盖,生长状况简单有效的度量参数。本文以城市绿化主要植被大叶黄杨为例,研究叶片滞尘对植被指数的影响,并构建植被指数修正模型对植被指数进行修正优化,提高植被指数的测量精度。研究选取北京城区为研究区,采集20个采样点的200个叶片样本,利用电子分析天平、ASD高光谱辐射仪及Win FOLIA叶面积仪,分别获取叶片尘埃量、光谱信息、叶面积等数据。通过对比分析样本叶片除尘前、后光谱特征及NDVI、NDWI、NDNI、NDII、CAI、PRI植被指数分布特征差异,结合单位滞尘量与光谱数据,构建植被指数修正模型,并对修正模型进行精度检验。结果表明:大叶黄杨叶片在除尘前与除尘后的光谱曲线均表现出典型的植被光谱特征,且蓝边、红边均出现在520和705 nm处,然而在350~700,750~1 350,1 500~1 850,1 900~2 100 nm波段范围内,滞尘对叶片光谱反射率影响显著,同时对植被指数也有较大影响;通过对滞尘量定量的研究分析发现,当尘埃质量增加时, NDVI和PRI植被指数与尘埃量的线性关系变弱,而NDWI,NDII,CAI植被指数与尘埃量依然保持明显的线性关系。修正模型NDVI,NDII,CAI,PRI精度验证决定系数(R2)分别为0.547,0.430,0.653,0.960,RMSE分别为0.035,0.020,0.112,0.009。研究结果表明对以后利用植被指数进行大面积植被反演、评估时,根据滞尘量影响进行修正优化,提高反演精度有一定参考意义。  相似文献   

7.
光谱混合机制研究对混合像元解算具有一定指导意义。利用全波段光谱仪累积期和消融期对规则和非规则分布模式下积雪-荒漠植被混合像元及纯净积雪和荒漠植被像元控制式采集反射光谱。K-均值法计算采集影像积雪和荒漠植被面积比并分析其对应混合像元光谱变化特征以获取更加精细的光谱特征信息,准同步Tetracam ADC3(Agricultural Digital Camera 3)采集图像并计算典型指数,从微观尺度上证实了混合像元主要出现在地类边界处。结果发现,1 456~1 697 nm粗粒径冻结雪反射光谱高于新雪反射光谱,新雪反射光谱明显高于陈雪;因冻结覆冰,荒漠植被光谱为积雪、冰晶和植被枝干混合光谱信息,新降积雪覆盖植被光谱特征为积雪和植被枝干的混合光谱信息,不存在常规绿色植被“红边”效应;采集角度为5°和10°时光谱低于垂直角度采集光谱,角度大于10°随角度增加荒漠植被光谱逐渐增大。像元内各个组成物质的面积比及所处像元的位置、采集角度和方向都会影响混合像元的光谱组合信息。  相似文献   

8.
高光谱遥感被越来越多的应用于确定混合像元的地物组分和比例。将不同面积比例的植被-土壤混合像元作为研究对象,使用偏振装置和 ASD FieldSpec3 光谱仪得到植被-土壤组成的混合像元的偏振反射光谱曲线,计算得到八种植被指数值,讨论不同面积比例,不同偏振角度下植被-土壤混合像元的高光谱偏振特性。研究发现,随着叶片占混合像元面积比例的增大,植被-土壤光谱曲线越来越明显地表现出植被光谱“五谷四峰”的特性,且峰值与谷底的位置与植被光谱基本相同。偏振角越大,混合像元的光谱偏振反射比越大;混合像元条件下,植被所占混合像元的面积比例越大,光谱受偏振角的影响越大。各植被指数与混合像元中植被面积大小呈线性关系,其中植被衰减指数和改进红边归一化植被指数的相关系数最大,可以达到98%左右,适合用于建立植被指数与植被占混合像元面积比例之间的相关模型。在植被面积发生变化时,改进红边比值植被指数的灵敏性更好。在利用光谱吸收特征参数进行植被指数估算时,发现吸收谷深度与光化学植被指数的二次函数模型拟合度最强,决定系数R2为0.963 3;光谱吸收指数与光化学植被指数的二次函数模型拟合度最强,决定系数R2为0.960 5。  相似文献   

9.
为了探索玉米(Zea mays L.)叶片反射光谱时间变化规律,对21个叶位的玉米叶片进行了每天一次的反射光谱测量,获得了玉米活体叶片整个生命周期反射光谱数据1 261条。在此基础上采用光谱相关图方法,对400~960 nm的可见光、近红外波段的玉米叶片反射光谱进行分段拟合,获得了7个表征玉米叶片反射光谱时间变化规律的拟合参数,并对这7个参数的时间变化趋势采用二元二次多项式进行拟合。结果表明该方法对单片叶片反射光谱的拟合效果非常理想,其中98.7%的叶片反射光谱拟合复相关系数r大于0.99,80.9%的叶片反射光谱拟合均方根误差RMSE小于0.001 5。将所有数据的拟合结果与原始数据进行比较,复相关系数r为0.9978,均方根误差RMSE为0.010 5,拟合结果表明该方法较好地保持了反射光谱时间变化的趋势,能够充分利用叶片反射光谱的相关性,有效地表征玉米叶片反射光谱随时间变化的规律。  相似文献   

10.
植被叶片叶绿素含量反演的光谱尺度效应研究   总被引:1,自引:0,他引:1  
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80 μg·cm-2)下的5 nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35 nm六种波段宽的光谱数据,再分析评价5~35 nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65 nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method, VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index, NDVI)和简单比值指数(simple ratio index, SRI)其次,虽然其决定系数R2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其“独立于传感器”的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。  相似文献   

11.
一种基于无人机高光谱数据的植被盖度估算新方法   总被引:2,自引:0,他引:2  
从分析对植被覆盖度(FVC)敏感的光谱特性入手,使用Avafield-3光谱仪(测量范围300~2 500 nm),利用人工草坪控制植被覆盖度的方式研究混合光谱与植被覆盖度的关系,通过实验发现红边区间(680~760 nm)对植被覆盖度最为敏感,而红边区间光谱的一阶导数与植被覆盖度的相关性最高(>0.98),且有较强的稳定性,因此选择红边斜率k作为估算植被盖度的参数。参考混合光谱分解法反演植被覆盖度的经典模型--即以NDVI(normalized difference vegetation index)为参数的植被覆盖度反演模型,以红边斜率代替NDVI构建了2个反演植被覆盖度FVC的新的红边斜率模型,该模型是对经典模型的进一步改进。为验证模型精度,以研究区内无人机(UVA)的高光谱数据和研究区实际测量的植被覆盖度数据进行验证:对高光谱数据计算每个像元680~760 nm之间的斜率,利用PPI(pixel purity index)提取纯像元,计算纯植被像元光谱斜率的最大值和纯土壤像元光谱斜率最小值,利用新的红边斜率FVC模型求取植被覆盖度;实测数据采用照相方法,经过几何校正、监督分类后统计植被覆盖度,结果表明:通过实测数据与无人机高光谱数据获取的植被覆盖数据进行验证,新构建的基于红边斜率的两个植被覆盖度模型的精度(R2分别达0.893 3和0.892 7)都略高于以NDVI为参数的模型(R2分别达0.839 9和0.829 9)。提出使用红边斜率计算植被覆盖度的模型,具有较明确的生物物理意义,具有较高的应用潜力和推广价值。  相似文献   

12.
基于高光谱特征与人工神经网络模型对土壤含水量估算   总被引:3,自引:0,他引:3  
土壤含水量(θ)是影响作物生长和作物产量的主要因素之一。旨在评估基于光谱特征参数的各种回归模型估算土壤含水量的精度,并比较人工神经网络(BP-ANN)和光谱特征参数模型的性能。2014年在室内获取砂土和壤土的土壤含水量和光谱反射率数据。结果表明:(1)当砂土容重为1.40 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和估算θ达到极显著水平(R2超过0.90);容重为1.50 g·cm-3时,用蓝边最大反射率和900~970 nm反射率总和估算θ相关性最好(超过0.70);容重为1.60 g·cm-3时,780~970 nm反射率总和与560~760 nm归一化吸收深度的R2均超过0.90,达到极显著水平;容重为1.70 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和的R2为0.88,呈极显著水平。(2)当土壤类型为壤土时,用900~970 nm最大反射率和900~970 nm反射率总和估算θ相关性最好。(3)蓝边反射率总和(R2=0.26和RMSE=0.09 m3·m-3)和780~970 nm吸收深度(R2=0.32和RMSE=0.10 m3·m-3)估算砂土的含水量相关性最好。在估算壤土的含水量时,900~970 nm最大反射率(R2=0.92和RMSE=0.05 m3·m-3)与900~970 nm反射率总和估算模型的精度最高(R2=0. 92和RMSE=0.04 m3·m-3)。(4)用人工神经网络模型能够更好地估算两种土壤的含水量(R2=0.87和RMSE=0.05 m3·m-3)。因此,人工神经网络模型对θ估算具有巨大的潜力。  相似文献   

13.
通过在土壤中添加浓度为0(对照组),25,75,125,175,275,375和485 μg·g-1的铀,进行5种植物(苎麻、印度芥菜、酸模、甘蓝型油菜、玉米)的盆栽实验,研究了不同生长期的叶片光谱角对土壤铀污染的定性和定量指示作用,分析了定量指示作用与叶片铀含量的关系,并筛选出来在苗期即能反演土壤铀含量的植物,为通过野外实测植物叶片光谱快速、安全地进行土壤铀含量的本底调查和动态监测提供了有效的途径。更重要的是,以该叶片尺度的研究为基础,后续可以开展在冠层尺度采用遥感影像进行大面积土壤铀污染监测的相关研究。实验结果与主要结论如下:(1)以实验植物在不同生长期的实测叶片反射光谱为基础,计算了土壤受到铀污染后,在五个波段区间(表征叶片色素的350~716 nm、表征红边和近红外平台的717~975 nm、表征水分的976~1 265,1 266~1 770和1 771~2 500 nm)的光谱角。以盆为单位统计5种实验植物在13个生长期的光谱角,绝大多数情况下均大于阈值。叶片光谱角对铀产生了350~2 500 nm的全面响应,可以定性指示土壤是否受到铀污染。(2)涵盖全部5种实验植物的8个生长期得到了以光谱角作为自变量、通过显著性检验的线性回归方程。其中7个线性回归方程的决定系数R2>0.64,3个(苎麻-苗期、印度芥菜-开花期和油菜-蕾薹期)的决定系数R2>0.81。综合其他反演效果评价指标,可以认为叶片光谱角也能定量指示土壤铀污染程度,但定量指示作用随植物种类、生长期的不同而不同,其中苎麻、印度芥菜在苗期的叶片光谱角就可以比较好地反演土壤铀含量。(3)当叶片铀含量较高时,其光谱角对土壤铀污染的定量指示作用较强。  相似文献   

14.
叶绿素含量高低反映植物健康状况,研究景区树种叶片叶绿素绝对值(SPAD)不同的光谱变化规律能为叶绿素高光谱监测波段识别与景区树种管理提供理论支撑。从琅琊山景区灌木和乔木类选取9个常见树种,探讨相同树种叶片SPAD值变化时的光谱差异,同时,横向对比相同SPAD值不同树种叶片的光谱特征,并深入分析不同树种叶片SPAD值与单波段原始光谱、光谱倒数、一阶微分、二阶微分及波段组合差值指数、归一化指数、比值指数、一阶微分归一化指数、一阶微分比值指数之间的关系。结果表明:9个所测树种叶片随着叶绿素SPAD值的升高,光谱变化规律各不相同,在可见光波段区分明显,总体上,光谱反射率最高的样本组SPAD值较低;叶绿素SPAD值相同时,在可见光波段,桂花较其余树种反射率整体较高; 在780~1 350 nm波段,广玉兰叶片反射率始终排前三,其余波段变化规律不明显;原始光谱反射率的二阶微分与海桐叶片SPAD值相关系数最大,一阶微分与其余8种相关性最高;与灌木、落叶乔木叶片SPAD值相关系数最大的光谱指数分别为差值指数、一阶微分归一化指数,与常绿乔木、不分树种相关系数最大的为一阶微分比值指数。  相似文献   

15.
利用高光谱植被指数反演植被水分含量时,快速、准确的找到实测光谱数据与植被水分相关性最高的植被指数是研究的重点。在农田尺度上,以春小麦野外光谱数据与叶片含水量的定量关系为基础,通过灰色关联度分析,筛选出与叶片含水量灰色关联度较高的5种典型的水分植被指数,并建立了估算春小麦叶片含水量(LWC)的偏最小二乘回归(PLSR)模型和BP神经网络(back propagation artificial neural networks, BP ANN)模型。结果表明:(1)光谱一阶导数可以有效去除噪声影响并突出光谱特征信息,尤其是在750~830,1 000~1 060和2 056~2 155 nm等区间明显提高了与LWC的相关性。(2)灰色关联法能够较好的表征各水分植被指数与叶片含水量间的关联性,其中基于原始光谱建立的前5个水分植被指数都是两波段比值植被指数,基于光谱一阶导数建立的水分植被指数基本上都是两波段归一化差值植被指数。(3)所建立的两种模型中,基于光谱一阶导数建立的PLSR和BP神经网络模型R2分别为0.80和0.81,稳定性基本相同且都较好;两种模型RMSE都是0.55,RPD分别为2.01和1.41,说明PLSR模型的预测精度比BP神经网络模型高。从模型的验证效果来看,PLSR模型在估算春小麦叶片含水量方面有一定的优势,为高光谱定量反演春小麦叶片含水量提供一定的参考。  相似文献   

16.
测试了采集自黑龙江省塔河地区的300块并进行抛光处理后的岩石样本350~2 500nm间光谱反射率、磁化率、密度、孔隙率和金属元素含量(Fe,Mn,Ti,Zr,V,Zn,Pb,Nb,Co,Bi),并计算了其光谱吸收深度。在此基础上,以相关性分析方法为依据,探讨了所采集岩石样本的金属元素含量、物性参数、反射光谱间的特征响应关系,计算了岩石样本金属元素和光谱吸收深度间的相关性系数、物性参数与光谱反射率的相关性系数,获得成果如下:(1)在410nm附近,闪长玢岩各金属元素与吸收深度间的相关系数都存在尖锐的波峰和波谷,相关系数达到极值。(2)岩石样本金属元素和吸收深度的相关性研究中,侵入岩的相关系数则显著高于其他岩石类型。(3)1 400nm附近,岩石样本金属元素与吸收深度、各物性参数与光谱反射率的相关性都存在尖锐的波峰和波谷。其中磁化率、密度、视孔隙率与光谱反射率的相关系数在可见光范围内波动变化较大。(4)在1 900~2 500nm范围内,金属元素与光谱吸收深度、各物性参数与光谱反射率间的相关系数波动较大,其中金属元素和光谱吸收深度呈显著相关,相关系数达到极值。进一步研究了岩石金属元素和物理特性与其光谱特征的关系,对于不同岩性的不同波段的反射率与不同金属元素间分布状态的探测,具有一定意义。  相似文献   

17.
雪-土混合像元微观/宏观尺度光谱混合机制差异分析   总被引:1,自引:0,他引:1  
为探索微观和宏观尺度下混合像元光谱混合机制的差异,在人工设置试验环境下,以人工制作雪-土混合像元表征微观尺度混合像元,固定全波段光谱仪探头距离,完成不同面积比的雪-土混合像元和雪、土端元反射光谱的采集,并对采集得到的光谱数据进行全波段反射光谱、350~2 500 nm归一化反射光谱和剔除噪声后350~1 815 nm再归一化反射光谱数据定性定量分析。同时,分析同期MODIS和环境与灾害监测卫星B星(HJ-1B CCD/IRS)影像中可见光、近红外和短波红外通道反射率相关性及MODIS影像中雪-土混合像元光谱与端元光谱的关系。结果表明;(1)微观尺度时,全波范围内混合像元反射光谱与端元光谱存在非线性关系,分波段范围内存在线性关系;(2)宏观尺度时,可见光范围内,CCD 1,2,3通道与MODIS 3,4,1通道相关系数在0.76~0.89间;短波红外范围内,IRS通道2与MODIS通道6相关系数为0.35。(3)MODIS影像中雪-土混合像元光谱与端元光谱关系为混合像元与雪端元光谱间正线性相关,与裸土端元光谱负线性相关。  相似文献   

18.
国画颜料解混一直是古画颜料研究的重要内容,其中光纤反射光谱(FORS)是无损化探测颜料类别的常用手段。通过CCD光纤光谱系统,从光谱线型对国画颜料进行了分类,分别探测了两种有机植物颜料藤黄和胭脂在不同比例混合下的漫反射光谱与吸收光谱,并获取了不同色系无机矿物质颜料混合后的漫反射光谱。分析了单一颜料和混合颜料的光谱特征峰值,运用多元线性回归(MLR)以及一阶导数光谱法(FDS),通过全波段线性解混获得了各组分颜料的比例。经过实验与理论分析,藤黄与胭脂的漫反射光谱为S型,混合颜料一阶导数光谱中两特征峰的位置分别为536和649 nm,在漫反射光谱中多元线性回归基本适用于该混合颜料的解混并显示出一定的线性规律,但无法精确地解混。而混合颜料的吸收光谱与单色光谱之间存在较好的线性关系,解混误差在5%左右。无机矿物质颜料中的漫反射光谱有S型(石黄和赭石)和钟型(石青和石绿)两种。首先,对于S型(石黄)与S型(赭石)混合颜料漫反射光谱,赭石的一阶导数光谱出现明显的“三峰”现象,并且混合颜料一阶导数光谱在534 nm处出现新的特征峰。多元线性回归理论虽适用于该混合颜料的解混,但由于不同颜料解混的权重因子不同,无法形成较为精准的线性模型。其次,对于S型(赭石)与钟型(石绿)混合颜料的反射光谱需要多元线性回归与导数光谱法共同判断混合比例的基本趋势,该光谱在400~800 nm范围内仅有一个交叉点。最后,利用钟型(石青)与钟型(石绿)混合颜料反射光谱的特征峰位置,即可判断出颜料混合比例的特征,随着混合比例的变化,反射光谱特征峰在457~524 nm出现了明显的横向移动,并且混合颜料光谱的峰值强度有明显的减弱。  相似文献   

19.
针对基于固定特征波长的植被指数不能适用于多个生育期叶绿素含量的诊断这一问题,研究优化提出一种基于双波长计算光谱覆盖面积的叶绿素诊断植被指数,用于稳健地诊断多生育期的营养。以拔节期、孕穗期和扬花期的冬小麦为研究对象,采集其325~1 075 nm范围的冠层反射光谱,测定采样样本的叶绿素含量。采用小波去噪和多元散射校正算法对光谱数据进行预处理。通过相关性分析,确定生育期特征波长的迁移范围,进而提出了基于光谱覆盖面积的冬小麦叶绿素含量光谱诊断参数(modified normalized area over reflectance curve, MNAOC)。以信噪比(SNR)和平滑度指标(S)进行综合评价,小波去噪函数的最佳参数为(“sqtwolog”,“mln”,“3”,“db5”)。相关性分析结果表明,生育期特征波段的迁移范围为(700 nm,723 nm)。在分析MNAOC指数对叶绿素含量诊断分辨率的基础上,以0.5 mg·L-1的分辨率建立一元线性回归模型的结果为:拔节期R2c=0.840 1,R2v=0.823 7;孕穗期R2c=0.865 5,R2v=0.817 4;扬花期R2c=0.833 8,R2v=0.807 6。与ratio vegetation index(RVI)等5种双波长植被指数对比表明,由于700和723 nm计算的光谱面积包含了由于生育期导致的光谱动态迁移特征,使得MNAOC指数在模型精度上和多个生育期的普适性上,都优于其他双波长代数运算植被指数,为大田环境冬小麦生育期叶绿素含量诊断提供支持。  相似文献   

20.
甘肃河西走廊土地荒漠化严重影响了当地居民的生产生活环境,高光谱遥感技术是荒漠化土地退化程度、土地类型识别、遥感反演等的重要研究手段,以河西地区荒漠化土地为研究对象,分析其光谱特征与植被退化程度、植物类型、季节变化等的关系,探讨河西地区荒漠化土地的光谱特征。主要结果有:(1)当植被覆盖度小于20%,同一类型不同退化阶段的植被光谱对沙地光谱的影响很小,沙地光谱反射率与裸地接近,尤其当植被盖度小于10%时,沙地与裸地的光谱曲线几乎重合,仅从植被景观很难反映出土地的沙化程度。(2)不同的植被类型对沙地光谱的反射率有一定的影响,以白刺为建群种的沙地光谱反射率较高,其次为梭梭沙地,多枝柽柳沙地相对较低,植被不同演替阶段下指示性植物的沙地光谱可以反映土地的沙化过程。(3)在植物生长季,沙地光谱反射率受土壤、植物含水量及植物物候期的影响,8月-10月高于其他月份,7月最低,沙地光谱波形曲线的季节变化规律可以反映出沙地土壤含水量的变化。研究结果对荒漠化土地遥感监测中土地沙化程度判定、季节信息提取、植被覆盖度估算等提供研究基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号