首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 233 毫秒
1.
针对土壤Cd高光谱遥感反演精度低、特征波段难以有效识别的问题,以湖南省某典型重金属污染矿区为例,开展类标准化Cd污染土壤样品和自然污染土壤样品Cd含量高光谱定量反演对比研究。创新之处主要在于以相对清洁的背景土壤作为内控样本,通过实验室定量添加Cd标准溶液制备符合自然污染规律的类标准化Cd污染土壤样品方案的提出与对比实验的开展,研究实验过程还包括自然污染土壤样品野外采集,类标准化样品与自然样品土壤重金属、有机质含量及350~2 500 nm光谱反射率等的测定,光谱全要素主成分逐步回归土壤Cd含量反演建模。研究发现,类标准化土壤样品Cd含量高光谱反演模型精度(adjR2=0.87)明显高于野外自然污染土壤样品Cd含量高光谱反演建模结果(adjR2=0.39)。土壤Cd含量与土壤光谱反射率间确实存在一定的响应关系,但各光谱波段对土壤Cd含量及其变化产生响应的程度存在差异,其中1 000,2 000以及2 300 nm波段光谱响应信号较强。该研究创新引入的类标准化Cd污染土壤样品制备方法有助于深入探索重金属Cd污染土壤光谱特征响应规律并发现重金属Cd含量及其变化的真正指示性特征波段,可为多要素混淆污染模式下模拟反演土壤重金属含量提供先验知识。  相似文献   

2.
基于 PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演   总被引:1,自引:0,他引:1  
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。传统的分光光度法对植物叶片破坏性较大且无法实时、快速、无损地获取叶绿素含量。新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。光学辐射传输模型PROSPECT从生物物理、化学的角度以及能量传输的过程出发,定量描述了叶片色素、水分、结构参数等对叶片反射光谱的影响。因此,提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值,实时、快速、无损、定量获取植物叶片叶绿素的含量。第一,多次测量三种蔬菜叶片的反射光谱,并用叶绿素仪测量SPAD值。然后,预处理光谱数据,获得平均反射率光谱。第二,以欧式距离为评价函数,利用PROSPECT模型对实测反射率光谱进行拟合。拟合过程中三种蔬菜欧式距离最大为0.008 9,最小为0.006 4,平均为0.007 5,表明该模型能够很好地拟合蔬菜叶片的反射率光谱。第三,根据拟合结果,反演叶绿素含量和透射率光谱,再根据透射率光谱获取叶片在940和650 nm波长处的光透过率,计算叶片的反演SPAD值。第四,建立反演叶绿素含量、反演SPAD值与实测SPAD值的关系模型。结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为:y=1.463 3x+16.374 3,两者相关系数为0.927 1,模型的决定系数为0.862,均方根误差为2.11;(2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好,其关系模型为:y=0.986 9x-0.668 3,两者相关系数为0.845 1, 模型的决定系数为0.714 3,均方根误差为3.380 2。研究表明,通过测量植物叶片的反射率光谱,利用PROSPECT模型可以无损、定量地获取蔬菜叶片的叶绿素含量和SPAD值。该方法可推广至其他植物的叶绿素测量和实时监测,为变量施肥、精准种植提供可靠的数据支持。研究结果对蔬菜生长态势的无损监测具有重要的意义。  相似文献   

3.
亚热带土壤铬元素的高光谱响应和反演模型   总被引:6,自引:0,他引:6  
高光谱遥感技术已成为当前遥感领域的前沿技术,因其高分辨率的特点,可利用地物反射光谱特征定量反演地物的物理化学性质。目前土壤环境质量愈来愈受到关注,土壤重金属含量与土壤环境质量安全密切相关,以往土壤高光谱遥感技术研究多注重于土壤有机成分如土壤碳氮的光谱反演模型,对土壤重金属含量的高光谱反演研究普遍较少。土壤重金属污染已经成为影响土壤质量安全的关键因素,对土壤重金属尤其是污染元素普查是当务之急。传统土壤重金属的测试方法要求条件较高,测试周期较长,试图建立土壤高光谱与土壤铬元素(ICP-MS测定)含量之间的定量预测模型,以实现土壤铬元素的快速准确预测。采集福州市土壤样品135个,对土壤样品在350~2 500 nm的光谱反射率进行倒数、对数、微分等六种变换,筛选出对土壤总铬含量敏感的光谱波段,最后获得福州土壤铬元素高光谱反演优化模型。研究结果表明:亚热带红壤总铬的敏感光谱波段为:可见光520~530 nm和近红外1 440~1 450,2 010~2 020,2 230~2 240 nm;亚热带地区土壤总铬—高光谱反演的优化模型为: y=120.768e-7.037x(相关系数R为0.568,均方根误差为0.619 μg·g-1,检验相关系数R为0.484,均方根误差为1.426 μg·g-1),该模型可以用于福州地区土壤全铬的光谱快速监测。  相似文献   

4.
通过室内盆栽试验,利用微分技术处理叶片反射光谱数据,研究铀污染下商陆叶片中的铀含量在不同光谱波段与原始光谱反射率、一阶导数光谱的相关关系,找到商陆铀污染诊断的敏感波段范围和最优光谱特征参数,并以相关性较好的敏感波段及光谱特征参数为自变量,与商陆叶片铀含量建立对应的估测拟合模型。如果以该模型为基础创建铀含量的冠层光谱模型,则有可能实现通过遥感影像监测叶片中的铀含量。实验结果表明:当商陆叶片中的铀含量为5.94~71.74 mg·kg-1时,叶片中铀含量与一阶导数光谱数据的相关性较原始光谱数据好,在749~766 nm区间内存在较好的相关性和光谱响应;根据上述相关性分析,选择14个光谱特征参数,计算他们与商陆叶片铀含量的相关系数,其中蓝边面积、红边位置、红边面积与蓝边面积的比值及红边面积与蓝边面积的归一化值与叶片铀含量的相关系数达到了0.05显著检验水平;选取一阶导数光谱中相关系数最高的波段757,758,760和761 nm处的值和上述相关性最高的4个光谱特征参数,与叶片铀含量建立多种形式的估测拟合模型,通过对拟合模型的精度检验,发现以红边面积与蓝边面积的比值、757和760 nm处反射率的一阶导数为自变量的拟合模型的预测效果较好,其中拟合效果最优的模型是以757 nm波段处反射率的一阶导数为自变量的三次函数模型,模型预测精度达到了89.8%。  相似文献   

5.
植被叶片叶绿素含量反演的光谱尺度效应研究   总被引:1,自引:0,他引:1  
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80 μg·cm-2)下的5 nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35 nm六种波段宽的光谱数据,再分析评价5~35 nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65 nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method, VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index, NDVI)和简单比值指数(simple ratio index, SRI)其次,虽然其决定系数R2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其“独立于传感器”的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。  相似文献   

6.
土壤Cd含量实验室与野外DS光谱联合反演   总被引:3,自引:0,他引:3  
土壤重金属高光谱遥感建模理论上能够大大降低传统化学分析测定所需成本,正逐步发展为有效探查土壤污染空间分布与开展污染土壤综合防治的关键技术。然而土壤重金属高光谱遥感调查技术目前多局限于稳定可控条件下的实验室光谱模型,野外诸多因素(光照、湿度、土壤粗糙度等)影响下野外原位光谱模型的有效性已成为困扰该项技术大范围推广亟待突破的关键科学问题。以湖南衡阳市某矿区为例,分别利用ASD地物光谱仪和等离子发射光谱法测定46个土壤样品350~2 500 nm的实验室光谱和Cd含量,并在土壤取样时同步测量样品野外原位光谱。在运用DS(direct standardization)转换算法处理野外光谱的基础上,融合实验室光谱先验知识,基于主成分逐步回归建模方法开展了土壤Cd含量实验室与野外原位DS光谱联合反演实验,交叉验证了模型的稳定性。同时为深入探究实验室与野外原位DS光谱联合反演模型的有效性,将其与基于实验室光谱、野外原位光谱、野外原位DS光谱、实验室与野外原位光谱联合建立的主成分逐步回归模型开展了对比分析。结果表明:野外原位光谱反演模型精度(R2=0.56)明显低于实验室光谱反演模型(R2=0.64),野外原位DS光谱反演模型与之相比精度有所提升(R2=0.66);在野外原位光谱DS转换校正基础上,联合实验室光谱先验知识的土壤Cd含量反演模型精度最高,R2可达0.72。与此同时,实验室与野外原位DS光谱联合反演模型揭示482,565,979和2 206 nm波段对研究区土壤Cd含量有较好指示性,此结果与实验室光谱反演模型所识别的特征波段一致,两者物理意义相同。研究结果证实了实验室光谱先验知识以及DS转换算法能够提升野外原位光谱模型的可靠性,可为发展土壤Cd含量野外原位高光谱遥感探测提供重要的提供理论与方法支撑。  相似文献   

7.
基于PCA的土壤Cd含量高光谱反演模型对比研究   总被引:4,自引:0,他引:4  
土壤重金属污染对人类健康造成了极大的威胁,如何快速摸清土壤污染情况尤为重要。高光谱遥感具备光谱分辨率高,快速无损等优势,使其在土壤组分反演方面具有巨大的潜力。针对高光谱信息冗余及光谱变换对土壤镉(Cd)含量估算的影响进行分析,并利用变换前后的高光谱数据对比研究了不同高光谱模型对土壤Cd含量反演的性能。首先利用等离子体质谱法和FieldSpec4地物光谱仪收集了56组土壤样品的Cd含量和对应的高光谱曲线(350~2 500 nm);为了弱化光谱测定中光亮变化和土壤表面凹凸对实验结果的影响,研究对高光谱数据进行倒数对数预处理;考虑到高光谱数据中存在大量的信息冗余,研究采用了主成分分析(PCA)对高光谱数据进行降维处理并最终保留了前12个主成分量作为特征变量。针对高光谱反演模型,研究选择了偏最小二乘(PLSR)、支持向量机(SVM)、人工神经网络(ANN)和随机森林(RF)四种回归模型建立PCA主成分与Cd含量之间的关系;最后,研究选取了决定系数(R2)、均方根误差(RMSE)和RPD三种精度评估指标评估回归模型的拟合精度,结果表明针对光谱采用PCA波段降维的方法处理后,选取的12个主成分对变化前后的光谱累计贡献率均达到99.99%,作为模型的输入变量,四种模型均具有一定的预测能力。无论光谱变换与否,PCA-RF反演模型的预测能力均为最好(R2分别为0.856和0.855,RPD均高达3.39)。利用PCA对高光谱数据降维处理可以有效降低高光谱数据冗余,有力的保证模型的预测能力。以PCA筛选出的主成分量可以作为模型极好的输入变量,以RF为基础的高光谱反演模型在反演土壤Cd含量时具有最佳效果,可为该区域及类似地区的土壤重金属污染物反演提供新的方法支撑。  相似文献   

8.
叶绿素是作物生长诊断的重要参数,对其进行高效检测是农田精细化管理的基础。PROSPECT模型是作物光谱学检测研究的重要工具,可为建立高精度叶绿素诊断模型提供数据集基础。为了建立具有普适性的田间玉米作物叶绿素含量检测模型,使用PROSPECT模型输入叶片结构参数和生化参数模拟叶片400~2 500 nm波段反射率曲线10 650条。在其他参数设置保持不变的情况下,分析光谱反射率曲线对叶绿素含量参数的敏感性,结果显示叶绿素含量仅在400~780 nm区间对光谱反射率曲线产生影响。讨论了3种叶绿素检测特征波长筛选策略,分别为:根据敏感性分析结果,选出548~610和694~706 nm区域共计76个波长,记为SEN-BAND;基于反向区间偏最小二乘法(Bi-PLS)筛选5个区间共计91个波长,记为BP-BAND;基于连续投影算法(SPA),在叶绿素影响区域400~780 nm筛选10个特征波长,记为SPA-BAND。进而使用2019年、2020年两年期田间实测玉米叶片光谱反射率曲线和叶绿素含量数据,分别应用上述3种方法选取的特征波长构建玉米叶片叶绿素含量检测模型。结果显示,使用SPA-BAND特征波长构建的模型,在两年期数据中均得到最佳结果。2019年数据模型建模集决定系数(R2c)为0.815 6,建模集均方根误差RMSEC为2.908 6,验证集决定系数(R2v)为0.799 5,验证集均方根误差RMSEV为2.997 7。2020年数据模型建模集决定系数(R2c)为0.949 2,建模集均方根误差RMSEC为0.976 8,验证集决定系数(R2v)为0.910 2,验证集均方根误差RMSEV为1.562 9。表明,基于PROSPECT模型筛选叶绿素含量特征波长建立的叶绿素诊断模型具有普适性。  相似文献   

9.
土壤是自然生态系统的重要组成部分,是人类赖以生存和农业生产的重要物质基础。随着社会经济高速发展,高强度的工农业生产活动导致重金属等各种污染物通过大气沉降、污水灌溉等途径进入土壤,并在土壤中不断富集造成土壤盐渍化和土壤重金属污染,两者是导致全球荒漠化和土壤退化的主要诱因。然而中国的耕地非常有限,粮食安全尤为重要。因此,如何快速、准确地大面积反演盐碱地的重金属含量是保障粮食安全的重要研究课题。针对上述关键问题,以吉林省镇赉县盐碱地为研究对象,建立了盐碱地重金属元素锰(Mn)、钴(Co)和铁(Fe)含量与土壤可见光-近红外光谱数据的定量反演模型。首先对原始光谱数据分别进行了Savitzky-Golay平滑、多元散射校正、连续统去除变换处理;然后基于预处理后的光谱数据构建了比值(RI)、差值(DI)和归一化(NDI)三种光谱指数,通过光谱指数与重金属含量的相关性分析确定模型训练样本,利用径向基神经网络算法进行建模并反演盐碱地重金属含量;最后通过相关系数等梯度循环建模的精度分析方法确定了光谱指数与锰、钴和铁含量相关性显著的敏感波段组合,建立了基于径向基神经网络算法的盐碱地重金属含量最优反演模型。研究结果表明,Mn选取相关系数r>0.70,Co选取相关系数r>0.80,Fe选取相关系数r>0.80,并选取敏感指数组合分别为108组、690组和31组,基于上述显著敏感指数组合建立的Mn,Co和Fe最优反演模型R2分别为0.703 4,0.897 6和0.848 4,均方根误差RMSE分别为53.007 3,1.059 2和0.363 4,平均相对精度达到88.64%,90.36% 和91.78%。该研究对盐碱地重金属含量的准确、快速分析提供了一种有效的方法,对实现土壤重金属污染治理具有重要的现实意义。  相似文献   

10.
针对玉米生产中叶片氮素快速、无损检测的实际需求,使用叶级高光谱数据(400~2 500 nm),依据等效水厚度梯度划分叶片样本,建立了梯度连续的叶片氮素反演模型,初步探索了含水量因素对叶片反射率特性及反演模型精度的影响。首先获取叶级高光谱数据,再根据等效水厚度数值大小对样本进行排序及滑动划分,建立了子集集合。父集除原光谱数据之外还采用了三大类:(1)基线矫正类、(2)散射校正类和(3)平滑处理类光谱变换方法,而子集未使用任何光谱变换方法。建立全波段的PLSR反演模型,对比模型精度,初步定量评价了等效水厚度因素对建模精度的影响。研究结果表明:(1)四组数据中有三组父集反演精度低于最优子集的反演精度,另外一组持平(2018大田低氮:(父)R2CV=0.48<(子)R2CV=0.57, (父)RPDCV=1.38<(子)RPDCV=1.52;2018大田高氮:(父)R2CV=0.48<(子)R2CV=0.7, (父)RPDCV=1.39<(子)RPDCV=1.8;2019大田高氮:(父)R2CV=0.59<(子)R2CV=0.68, (父)RPDCV=1.57<(子)RPDCV=1.77);(2)四组数据的最优子集反演精度都达到甚至超过了定性模型水平,而父集只有两组;(3)制作反演数据集时在样本筛选问题上需要考虑等效水厚度因素,以避免过于宽泛的样本选择而导致整体反演精度的损失。综上,等效水厚度因素对玉米叶片氮素建模精度存在显著影响,不可忽视。在考虑该因素后,使用叶级高光谱数据对玉米叶片氮素进行快速无损检测的技术方法会更加可信、可行。  相似文献   

11.
为促进LIBS技术在微量重金属元素检测以及核污染检测领域的应用,提高检测灵敏度和准确性,采用了激光双脉冲LIBS技术和光电双脉冲LIBS技术,分别对土壤和二氧化硅中的铀元素进行分析。首先,对激光脉冲能量、电压和采集延时等参数进行优化,提高铀元素特征谱线的强度和信噪比;然后在优化实验参数条件下,对含不同浓度铀元素的土壤样品和二氧化硅样品进行激发;选取UII 367.01 nm、 UII 454.36 nm两条铀元素的特征谱线作为分析线,通过铀元素浓度与特征谱线强度的线性关系,建立定标曲线。双脉冲激光激发条件为:激光脉冲1作为预脉冲,主要参数为1 064 nm, 90 mJ, 9.2 ns,激光脉冲2作为再加热脉冲,主要参数为355 nm, 50 mJ, 8 ns,两个脉冲的时间间隔800 ns,光谱采集相对第二个脉冲延时1μs,得到铀元素在土壤和二氧化硅两种样品中的浓度检测下限分别为572和110 mg·kg-1,拟合优度值R2分别为0.958和0.999。在光电双脉冲激发条件下,激光脉冲作为预脉冲,主要参数为355 nm, 50 mJ, 8 ...  相似文献   

12.
干旱胁迫下春玉米拔节-吐丝期高光谱特征   总被引:4,自引:0,他引:4  
通过监测辽宁锦州地区不同干旱胁迫条件下春玉米拔节-吐丝期冠层高光谱分布,研究其可见光、红边区和近红外光的光谱分布特征,分析不同波长光谱反射率与各深度土壤湿度的相关关系,结果表明:拔节-吐丝期,0~20 cm层土壤湿度与350~710 nm区间光谱反射率存在显著的负相关关系,各层土壤湿度(0~60 cm)与710~1 300 nm区间光谱反射呈正相关关系,其中40 cm深度土壤湿度与光谱反射率正相关性较好;红边区(680~760 nm)光谱反射率较好的反映了植株的生长状况,该区间单位波长光谱反射率变化由增加-减小,为相对较稳定的光谱区间。各层土壤湿度与红边参数的多项式回归趋势相似,表层0和20 cm土壤湿度与红边参数关系曲线呈先增加后减小趋势,40和60 cm土壤湿度则先减小后增加。  相似文献   

13.
土壤重金属元素含量检测及防治,对我国农业、生态环境修复具有重大意义。利用外加腔体约束结合激光诱导击穿光谱技术(LIBS)获得土壤光谱数据,采用机器学习对土壤中重金属元素Ni和Ba含量进行分析。实验设置延迟时间为0.5~5 μs,选择Ni Ⅱ 221.648 nm和Ba Ⅱ 495.709 nm作为目标研究特征谱线,计算两种LIBS条件下延迟时间对信噪比、光谱强度及增强因子的影响。结果表明,腔体约束LIBS(CC-LIBS)可以增大光谱强度及目标元素信噪比,同时随着采集延迟时间增长,等离子体数目变少,光谱强度及信噪比逐渐减小并趋于稳定;当延迟时间设置为1 μs时,CC-LIBS条件下Ni和Ba元素特征谱线信噪比达到最优,确定此时为LIBS最优实验条件。通过最优条件获取9种含Ni和Ba元素土壤样品的光谱数据,由于采集到的每组光谱信息有12 248个数据点,利用主成分分析(PCA)对CC-LIBS条件下的光谱数据降维,在保留95%以上的土壤原始信息后,选择9个主成分作为定量分析模型的输入变量,以提高模型的运算速度。采用机器学习中的Lasso,AdaBoost和Random Forest模型,对PCA降维后的光谱数据进行建模及预测,实现土壤重金属元素Ni和Ba的定量分析。结果表明,与Lasso和AdaBoost模型相比,Random Forest模型在训练集和测试集中表现出的预测性能最优。Random Forest模型下Ni元素在测试集中的R2为0.937,RMSEP为3.037;Ba元素在测试集中的相关系数R2为0.886,均方根误差RMSEP为90.515。基于腔体约束LIBS技术结合机器学习,为土壤重金属元素的高精度检测提供了技术指导。  相似文献   

14.
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4 Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数--归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26 d起800~1 330 nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700 nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368 nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33 d最高。建议用400~700和760~1 368 nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750 nm区间出现两个“峰”,通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740 nm区间冠层一阶微分光谱值在开花期最高,开花后10 d的一阶微分光谱值最低。在开花期至开花后10 d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33 d N3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33 d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33 d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数--归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。  相似文献   

15.
氮素是作物生长发育必需的营养元素之一,作物的全氮含量是表征其氮素状况的主要指标。田块尺度的冬小麦全氮含量空间分布监测可以辅助其精准定量追肥,减少环境污染。无人机高光谱遥感具有分辨率高、时效性高、成本低等优势,可为作物长势信息反演提供重要数据源。XGBoost(extreme gradient boosting)作为一种新兴集成学习算法,运行效率高,泛化能力强,可以有效的应用于构建冬小麦全氮含量遥感反演模型,预测田块尺度冬小麦全氮含量空间分布。以农业部蒙城砂姜黑土生态环境站内拔节期冬小麦为研究对象,开展以下工作: (1)以低空无人机搭载高光谱成像仪获取冬小麦拔节期冠层成像光谱影像,结合地面采样数据,获取126个样点全氮含量数据;(2)分析拔节期冬小麦冠层光谱特征,并根据Person相关系数分析176个波段的光谱反射率与全氮含量之间的相关性;(3)构建基于XGBoost算法的不同土壤肥力条件下拔节期冬小麦全氮含量无人机高光谱反演模型。结果表明: (1)176个波段(400~1 000 nm)的光谱反射率与冬小麦全氮含量之间具有较强的相关性,除了735.5 nm外其他波段光谱反射率与全氮含量之间的相关系数均大于0.5;(2)基于XGBoost算法构建的拔节期冬小麦全氮含量无人机高光谱遥感反演模型具有较高的反演精度(R2=0.76,RMSE=2.68);(3)基于XGBoost算法的冬小麦全氮含量反演模型可以获取不同土壤肥力条件下田块尺度的全氮含量空间分布图,总体上呈现较为显著的空间差异。该研究可为冬小麦精准定量追肥提供一定的科学依据,也为发展无人机高光谱遥感的精准农业应用提供了参考。  相似文献   

16.
利用高光谱植被指数反演植被水分含量时,快速、准确的找到实测光谱数据与植被水分相关性最高的植被指数是研究的重点。在农田尺度上,以春小麦野外光谱数据与叶片含水量的定量关系为基础,通过灰色关联度分析,筛选出与叶片含水量灰色关联度较高的5种典型的水分植被指数,并建立了估算春小麦叶片含水量(LWC)的偏最小二乘回归(PLSR)模型和BP神经网络(back propagation artificial neural networks, BP ANN)模型。结果表明:(1)光谱一阶导数可以有效去除噪声影响并突出光谱特征信息,尤其是在750~830,1 000~1 060和2 056~2 155 nm等区间明显提高了与LWC的相关性。(2)灰色关联法能够较好的表征各水分植被指数与叶片含水量间的关联性,其中基于原始光谱建立的前5个水分植被指数都是两波段比值植被指数,基于光谱一阶导数建立的水分植被指数基本上都是两波段归一化差值植被指数。(3)所建立的两种模型中,基于光谱一阶导数建立的PLSR和BP神经网络模型R2分别为0.80和0.81,稳定性基本相同且都较好;两种模型RMSE都是0.55,RPD分别为2.01和1.41,说明PLSR模型的预测精度比BP神经网络模型高。从模型的验证效果来看,PLSR模型在估算春小麦叶片含水量方面有一定的优势,为高光谱定量反演春小麦叶片含水量提供一定的参考。  相似文献   

17.
亚热带红壤全氮的高光谱响应和反演特征研究   总被引:4,自引:0,他引:4  
利用高光谱遥感技术反演土壤性质已经成为土壤学和遥感科学研究领域的新手段,特别对土壤化学元素含量的高光谱反演,已成为土壤元素快速监测方法的的研究热点。以往研究往往关注不同类型土壤的化学元素光谱响应特征模型,以试图找到普适性的元素-光谱反演模型。由于成土因素的复杂性,土壤类型及其化学元素分布具有明显的空间异质性特征,宏观尺度上的土壤-光谱统计反演模型客观上具有较大的不确定性。若范围缩小到同一个气候带,土壤生物地球化学反应过程较相似,土壤化学元素-光谱反演模型的不确定性相对较小。以福州市为研究区,采集福州市典型红壤样品135个,研究土壤全氮含量的高光谱响应特征,对土壤样品在350~2 500 nm的光谱反射率分别进行倒数对数、微分等五种变换,分析变换后的光谱信息与土壤总氮含量的相关性,筛选出强相关敏感波段,通过设计不同的建模和验证样品比例,用逐步多元线性回归获得福州土壤的氮元素高光谱反演优化模型。结果表明:亚热带红壤全氮的敏感光谱波段为:可见光634~688 nm和红外872,873,1 414和1 415 nm;亚热带沿海地区土壤全氮—高光谱反演的优化模型为: Y=5.384X664-1.039(决定系数R2为0.616,均方根误差为0.422 mg·g-1,检验R2为0.608,均方根误差为0.546 mg·g-1),该模型可以用于福州地区土壤全氮的光谱快速监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号