首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
太阳能光伏热水系统的能量梯级利用   总被引:2,自引:0,他引:2  
为了实现太阳能光伏发电系统中用于冷却太阳能电池的低品位热能利用,本文提出了太阳能光伏热水系统。通过对单体光伏光热系统(PV/T)的实验研究表明,在单体PV/T放置角度为30°,流量为200 L/h时,集热效率可达到最大值65.6%,系统的平均发电效率为14.3%,瞬时综合效率最大为83%,达到了能量的梯级利用。  相似文献   

2.
The availability of low-cost alternatives to electronic grade silicon has been and still is the condition for the extensive use of photovoltaics as an efficient sun harvesting system. The first step towards this objective was positively carried out in the 1980s and resulted in the reduction in cost and energy of the growth process using as feedstock electronic grade scraps and a variety of solidification procedures, all of which deliver a multi-crystalline material of high photovoltaic quality. The second step was an intense R&D activity aiming at defining and developing at lab scale a new variety of silicon, called “solar grade” silicon, which should fulfil the requirement of both cost effectiveness and high conversion efficiency. The third step involved and still involves the development of cost-effective technologies for the manufacture of solar grade silicon, in alternative to the classical Siemens route, which relays, as is well-known, to the pyrolitic decomposition of high-purity trichlorosilane and which is, also in its more advanced versions, extremely energy intensive. Aim of this paper is to give the author’s viewpoint about some open questions concerning bulk solar silicon for PV applications and about challenges and chances of novel feedstocks of direct metallurgical origin.  相似文献   

3.
光伏阵列的输出特性受光照强度影响很大,在弱光下光伏电池的最大功率点跟踪控制算法无法达到蓄电池的充电要求。为了最大限度利用光伏阵歹tl的输出功率,采用超级电容减小光照变化对蓄电池充电的影响。针对独立光伏发电系统的特点,设计了一种有源式混合储能方案,在保证光伏电池获得最大功率跟踪的同时,也能满足蓄电池的充电要求,建立的Simulink/MATLAB仿真模型验证了该设计方案的有效性。  相似文献   

4.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

5.
《Current Applied Physics》2020,20(4):582-588
Energy storage system powered by renewable energies is a viable option to meet energy requirement without addition of carbon footprints to the environment. This study involves development of theoretical and computational models for a solar photovoltaic (PV) system coupled with a lead acid battery. The study commenced with selection of most appropriate lead acid battery and PV system for installation in a representative location in Riyadh, Kingdom of Saudi Arabia. Various technical and economic parameters were assessed and calculated by computational approach. The optimized lead acid battery was integrated with low concentration solar PV panels (CPV) followed by a feasibility study. Theoretical model was developed for the integrated system to calculate various parameters of the CPV and lead acid battery. Technical and economic assessment of this coupled unit was calculated using a theoretical approach. The developed model was then subjected to computational approach for verification and validation analysis of the integrated system. The detailed assessment of batteries and integrated system show the applicability of this system in Riyadh region. The research will be extended to develop energy storage systems for remote areas using lead acid batteries.  相似文献   

6.
两级透射-反射聚光分频电热联产系统设计和分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王刚  胡芃  陈则韶  程晓舫 《物理学报》2012,61(18):184216-184216
在传统聚光条件下的太阳能光伏发电系统中,由于太阳光中存在所有波段的光子,而其中只有一部分能够被太阳电池用来发电,其余的部分进入太阳电池之后非但不会被用于发电,反而会变成热量使太阳电池升温,从而使电池光电转换效率下降.本文设计了一种聚光且具有分频功能的太阳能电热联产系统,利用线聚焦菲涅尔透镜和光谱选择性透过涂层改善太阳电池表面的入射光环境,在聚光的同时将不利于光伏发电的太阳光波段反射并加以收集利用.分析结果表明,与相同条件下传统的只进行聚光的光伏系统相比,两级透射一反射聚光分频电热联产系统具有更高的太阳能利用效率.  相似文献   

7.
In an attempt to take full advantage of near-infrared part of the solar spectrum, Gd2(MoO4)3:Er3+ nanophosphors have been proposed as potential luminescent materials to enhance the response of the silicon solar-cell. Upon excitation with low-energy near-infrared photons, intense upconverted emissions at 545, 665, 800, and 980 nm, for which energies higher than the bandgap of silicon solar-cell, have been achieved with conversion efficiencies of 0.12%, 0.05%, 0.83%, and 1.35%, respectively. Development of nanophosphors for photovoltaic purposes could open up an approach in achieving high-efficiency silicon-based solar-cell by means of the up-conversion of the sub-bandgap near-infrared part of the solar spectrum (E < 1.12 eV) to visible/near-infrared photons.  相似文献   

8.
Two main issues governing the design of a solar concentrator module with triple-junction nano-heterostructure photovoltaic converters (PVCs) are considered: the effective concentration of radiation using Fresnel lenses and effective heat removal from PVCs. By theoretically and experimentally simulating these processes, the design parameters of module’ s elements are determined. A test batch of full-size modules has been fabricated. Each module consists of a front panel of small-size Fresnel lenses (a total of 144 lenses arranged as a 12 × 12 array) and the corresponding number of multilayer InGaP/GaAs/Ge PVCs. The PVCs are mounted on heat-distributing plates and are also integrated into a panel. The efficiency of the concentrator module with a 0.5 × 0.5-m entrance aperture measured under outdoor conditions is 24.3%, which is more than twice as high as the efficiency of standard (concentrator-free) silicon modules. In smaller test modules, the efficiency corrected for the PVC standard temperature (25° C) reaches 26.5%.  相似文献   

9.
王坚强  刘邦武  夏洋  徐征 《物理学报》2014,63(1):18802-018802
传统的光伏组件为了实现发电功率最大化,安装时具有一定倾角,但在使用过程中仍有一部分光会被组件表面反射到空中造成浪费.本文设计了一种带反光板结构的高效黑硅太阳能电池组件,多角度吸光的黑硅组件配合反光板结构可以充分利用反射光线.对反光板和黑硅组件夹角进行了模拟计算,结果表明,当光伏组件安装倾角为34时,反光板安装角度为16.5最佳,同等光照条件下使得电池的发电功率增加了约39%.  相似文献   

10.
《Current Applied Physics》2014,14(5):731-737
The output energy of photovoltaic (PV) modules under outdoor conditions is greatly influenced by the spectral irradiance distribution of the solar spectrum. To analyze this effect on PV modules, the spectral irradiance distribution, which is one-dimensional data, has to be represented by a zero-dimensional index. The average photon energy (APE) is an index for spectral irradiance distributions, which represents the average energy per photon in a spectrum. We have previously analyzed the uniqueness of the shape of the solar spectrum in the wavelength range of 350–1050 nm, and one corresponding value of APE showed a specific shape of spectral irradiance distribution. In this study, new indexes were calculated for a limited wavelength range of 350–750 nm and multiple bands of 450–500 nm and 800–850 nm of the solar spectrum for easy measurement and calculation. The result shows the uniqueness of new indexes to the shape of measured solar spectrum and the standard deviations were found to be quite small. This indicates that the new indexes are reasonable for representing the spectral irradiance distribution and its effect on PV performance.  相似文献   

11.
Zhang F  Wu X  Zhan J 《Journal of fluorescence》2011,21(5):1857-1864
A sensitive and selective method for the trace determination of 3, 3’, 4, 4’-tetrachlorobiphenyl (PCB77) by using bovine serum albumin (BSA) as a fluorescence probe was introduced. Under optimum conditions, the enhanced fluorescence intensity was proportional to the concentration of polychlorinated biphenyls in the range of 8.9 × 10−8–5.0 × 10−6 mol L−1 for PCB77, and 5.0 × 10−7–5.0 × 10−6 mol L−1 for 2, 2’, 5, 5’-tetrachlorbiphenyl (PCB52). The detection limits (S/N = 3) of PCB77 and PCB52 were 2.6 × 10−8 mol L−1 and 2.9 × 10−7 mol L−1, respectively. Furthermore, the fluorescence enhancement mechanism was discussed in detail. Results indicated that fluorescence enhancement of the system originated from the formation of BSA-PCBs complexes. In addition, PCBs were mainly bound to the tyrosine residues in BSA molecules.  相似文献   

12.
The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.  相似文献   

13.
S. Maity  A. Haldar  N. B. Manik 《Ionics》2008,14(6):549-554
Effect of plasticizers on electrical and photovoltaic properties of safranine-T-dye-based solid-state photo electrochemical cell (PEC) is studied. Ethylene carbonate (EC) and propylene carbonate (PC) are used as plasticizers. Dark current–voltage characteristic and different photovoltaic parameters such as open-circuit voltage, short-circuit current, and power conversion efficiency are measured. To understand the effect of plasticizers on charge transport process, we analyze the dark current–voltage characteristics to estimate the trap energy. From detail analysis of dark I–V, it has been observed that there is a crossover voltage called transition voltage where the conduction mechanism changes. Above this voltage, the dark current is a space charge limited current (SCLC) in the presence of exponentially distributed traps. Below transition voltage, current is ohmic for the cell without plasticizers and dark current is an SCLC in presence of discrete traps for the cell with plasticizers. From our analysis, it is shown that the transition voltage reduces due to the presence of plasticizers but the characteristic trap energy (ET) is not changed significantly. From photovoltaic measurements, it is observed that in presence of EC and PC power conversion efficiency of the device increase from 7.319 × 10−4% to 14.64 × 10−4% under illumination with polychromatic light of 100 mW/cm2. It is expected that the power conversion efficiency depend on transition voltage. Due to the presence of plasticizers, the barrier potentials of the devices reduce which results lowering of transition voltage. Lowering of it assists the migration of charge carriers and as a result power conversion efficiency enhances.  相似文献   

14.
A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes’ shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (χ = 1.20) with the following lifetimes: τ 1 = 657 ps; τ 2 = 10.0 ns; τ 3 = 59.42 ns; and τ 4 = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M−1. The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.  相似文献   

15.
The dielectric constant and the electrical conductivity of the transparent glasses in the composition 3Na2O-7B2O3 (NBO) were investigated in the 100 Hz–10 MHz frequency range at various temperatures. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 0.76 ± 0.02 eV, close to that (0.74 ± 0.02 eV) obtained from DC conductivity studies. The frequency-dependent electrical conductivity was analyzed using Jonscher’s power law. Temperature-dependent behavior of the frequency exponent (n) suggested that the correlated-barrier hopping model was the most appropriate to rationalize the electrical transport phenomenon in NBO glasses.  相似文献   

16.
Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (∼ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (∼ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated. PACS  42.55.Px; 42.60.-v; 42.62.Fi; 07.07.Df  相似文献   

17.
We study the electronic dispersion for a graphene sheet and also a (5,5) single wall carbon nanotube (SWCNT) by using the PWscf code from the ‘Quantum Espresso’ package. Two different types of pseudopotentials, ‘norm conserving’ and ‘ultra soft’, have been employed and the results are more or less similar up to the Fermi level. By energy relaxation, it was found that, if the inter-layer distance of graphite expands up to 4.5 times its in-layer (hexagonal) lattice constant, then each layer can be considered as an individual graphene sheet and, in a bundle of (5,5) SWCNTs, the optimum separation between the tubes’ centers is about 19 a.u. and, if it expands to 22 a.u., then a single wall tube consideration can be made. The calculated band structure and density of states (DOS) for the (5,5) SWCNT show that in the vicinity of the Fermi level there is no energy gap (so that it is metallic) and there is a general agreement between them and zone-folding studies or other ab initio methods in the literature. The effects of curvature on the band shifts and DOS have been considered, and they magnify the departure from Mintmire and White’s universal prediction. PACS  71.20.Tx; 71.15.Mb; 73.61.Wp  相似文献   

18.
The paper reviews the current status of the research on grain boundaries in polycrystalline Cu(In, Ga)(S, Se)2 alloys used as absorber materials for thin-film solar cells. We discuss the different concepts that are available to explain the relatively low electronic activity of grain boundaries in these materials. Numerical simulations that have been undergone so far to model the polycrystalline solar cells are briefly summarized. In addition, we give an overview on the experiments that have been conducted so far to elucidate the structural, defect-chemical, and electronic properties of grain boundaries in Cu(In, Ga)(S, Se)2 thin-films.  相似文献   

19.
The electrical properties and electromechanical responses of acrylic elastomers and styrene copolymers were investigated towards electroactive applications such as artificial muscle and/or MEMS (micro-electro-mechanical systems) devices. The effect of temperature, between 300 and 370 K, on electrical conductivity, dielectric constant, storage and loss moduli (G’ and G”), storage modulus response (ΔG’2 kV/mm), and the storage modulus sensitivity (ΔG’2 kV/mm/G’0) of acrylic elastomers and styrene copolymers were investigated under applied electric field strengths varying from 0 to 2 kV/mm. The acrylic elastomers (AR70, AR71, and AR72) possess linearly positive storage modulus responses or sensitivities with increasing temperature and dielectric constant. On the other hand, the styrene copolymers (SAR, SBS, and SIS) attain the maximum storage modulus responses or sensitivities at the glass-transition temperature of the hard segments. PACS  77.22.-d; 82.35.Lr; 83.60.Np; 83.80.Va; 91.60.Ki  相似文献   

20.
This paper focuses on the intrinsic charge transport in self-assembled monolayers (SAMs) and on the nature of transport in organic systems, in which surface and bulk properties are undistinguishable due to scale of consistent materials. Developed SAM-OFETs and photovoltaic (SAM-PVC) devices are characterized independently to study a role of charge delocalization both in electrical and optical manifold. The dynamics of charge transport are determined and used to clarify a transport mechanism. Taken together, these SAM devices provide a unique tool to study the fundamentals of polaronic transport on organic surfaces and to discuss the SAM-OFET and SAM PVC performance. Vapor phase molecular self-assembly of 1, 4, 5, 8-naphthalene-tetracarboxylic diphenylimide (NTCDI) having a rich π-stacking charge delivery system is used to enhance the performance of SAM-OFET and SAM PVC devices. Charge mobility in SAM-OFET could achieve values of more than 30 cm2 V−1 s−1. The dynamics of charge transport in NTCDI-derived SAM-OFETs were probed using time-resolved measurements in an NTCDI-derived photovoltaic cell device. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. In addition, the possibility of measuring transport in highly ordered SAM structures shines light on the polaron charge transfer in organic materials. Our study proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in SAM nanodevices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated in this report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号