首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report retrievals of COClF (carbonyl chlorofluoride) based on atmospheric chemistry experiment (ACE) solar occultation spectra recorded at tropical and mid-latitudes during 2004-2005. The COClF molecule is a temporary reservoir of both chlorine and fluorine and has not been measured previously by remote sensing. A maximum COClF mixing ratio of (10-12 per unit volume, 1 sigma) is measured at 28 km for tropical and subtropical occultations (latitudes below 20° in both hemispheres) with lower mixing ratios at both higher and lower altitudes. Northern hemisphere mid-latitude mixing ratios (30-50°N) resulted in an average profile with a peak mixing ratio of , 1 sigma, at 27 km, also decreasing above and below that altitude. We compare the measured average profiles with the one reported set of in situ lower stratospheric mid-latitude measurements from 1986 and 1987, a previous two-dimensional (2-D) model calculation for 1987 and 1993, and a 2-D-model prediction for 2004. The measured average tropical profile is in close agreement with the model prediction; the northern mid-latitude profile is also consistent, although the peak in the measured profile occurs at a higher altitude (2.5-4.5 km offset) than in the model prediction. Seasonal average 2-D-model predictions of the COClF stratospheric distribution for 2004 are also reported.  相似文献   

2.
The first measurement of the HCFC-142b (CH3CClF2) trend near the tropopause has been derived from volume mixing ratio (VMR) measurements at northern and southern hemisphere mid-latitudes for the 2004–2008 time period from spaceborne solar occultation observations recorded at 0.02 cm−1 resolution with the ACE (atmospheric chemistry experiment) Fourier transform spectrometer. The HCFC-142b molecule is currently the third most abundant HCFC (hydrochlorofluorocarbon) in the atmosphere and ACE measurements over this time span show a continuous rise in its volume mixing ratio. Monthly average measurements at northern and southern hemisphere mid-latitudes have similar increase rates that are consistent with surface trend measurements for a similar time span. A mean northern hemisphere profile for the time span shows a near constant VMR at 8–20 km altitude range, consistent on average for the same time span with in situ results. The nearly constant vertical VMR profile also agrees with model predictions of a long lifetime in the lower atmosphere.  相似文献   

3.
The average tropospheric volume mixing ratio of CHF2Cl (HCFC-22) has been retrieved from a time series of high spectral resolution ground-based infrared solar absorption spectra recorded with the McMath Fourier transform spectrometer located at the U.S. National Solar Observatory facility on Kitt Peak in southern Arizona (31.9°N, 111.6°W, 2.09 km altitude) for the time period October 1987–November 2002. The retrievals are based on fits to the well-isolated, unresolved 2ν6 Q branch at 829.05 cm−1 and the SFIT2 retrieval algorithm. The measured daily averages show a near linear rise per year in the mean tropospheric volume mixing ratio as a function of time with a best fit yielding an average increase rate of (5.66±0.15) parts per trillion (10−12) by volume per year, corresponding to (6.47±0.17)%yr−1, 1 sigma, at the beginning of the time series. The tropospheric mixing ratios retrieved from the solar spectra have been compared with monthly average surface flask sampling measurements from the Climate Monitoring and Diagnostic Laboratory (CMDL) station at Niwot Ridge, Colorado (40.0°N, 105.5°W, 3013 m altitude), archived measurement from the same location, and early CMDL northern hemisphere Pacific cruise measurements. The average ratio of the retrieved tropospheric mixing ratio relative to the CMDL surface mixing ratio is 1.053 for the overlapping 1987 to 2002 time period. The retrieved mean tropospheric mixing ratio is consistent with the surface measurements within the errors estimated for the remote sensing observations.  相似文献   

4.
We report measurements of hydrogen peroxide (H2O2) profiles from infrared solar occultation spectra recorded at 0.02 cm−1 resolution by the atmospheric chemistry experiment (ACE) during 2004 and 2005. Mixing ratios as high as 1.7 ppbv (1 ppbv=1×10−9 per unit volume) were measured in the subtropical troposphere. Back trajectories, fire count statistics, and simultaneous measurements of other species from the same occultation provide evidence that the elevated H2O2 mixing ratios originated from a young biomass-burning plume. The ACE time series show only a few cases with elevated H2O2 mixing ratios likely because of the short lifetime of H2O2 and the limited sampling during biomass-burning time periods.  相似文献   

5.
The average tropospheric volume mixing ratios of chlorofluorocarbon 12 (CCl2F2) have been retrieved from high-spectral resolution ground-based infrared solar-absorption spectra recorded from March 1982 to October 2003 with the McMath Fourier transform spectrometer at the US National Solar Observatory facility on Kitt Peak in southern Arizona (31.9°N, 111.6°W, 2.09 km altitude). The retrievals are based on fits to the unresolved ν8 band Q-branches near using the SFIT2 retrieval algorithm. The annual increase rate was equal to (16.88±1.37) parts per trillion (10-12) by volume at the beginning of the time series, March 1982, or (4.77±0.04)%, 1 sigma, declining progressively to (2.49±1.24) parts per trillion, by volume at the end, October 2003, or (0.46±0.24)%, 1 sigma. Average tropospheric mixing ratios from the solar spectra have been compared with average surface flask and in situ sampling measurements from the Climate Monitoring and Diagnostics Laboratory (CMDL) station at Niwot Ridge, CO, (USA) (40.0°N, 105.5°W, 3013 m altitude). The average ratio and standard deviation of the monthly means of the retrieved tropospheric mixing ratios relative to the CMDL surface mixing ratios is (1.01±0.03) for the overlapping time period. Both datasets demonstrate the progressive impact of the Montreal protocol and its strengthening amendments on the trend of CCl2F2, though a tropospheric decrease has yet to be observed.  相似文献   

6.
The changes in the atmospheric concentration of 16 halogenated gases in the atmosphere have been determined using measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS). ACE-FTS has been used to measure the change in concentration between 2004 and 2010 of CCl4, CF4, CCl3F (CFC-11), CCl2F2 (CFC-12), C2Cl3F3 (CFC-113), CH3Cl, ClONO2, COF2, COCl2, COClF, CHF2Cl (HCFC-22), CH3CCl2F (HCFC-141b), CH3CClF2 (HCFC-142b), HCl, HF and SF6 between 30°N and 30°S. ACE-FTS measurements were compared to surface measurements made by the AGAGE network and output from the SLIMCAT three-dimensional (3-D) chemical transport model, which is constrained by similar surface data. ACE-FTS measurements of CFCs show declining trends which agree with both AGAGE and SLIMCAT values. There are problems with the ACE-FTS retrievals of CFC-113 and HCFCs, with work currently ongoing to correct these problems. At lower altitudes the volume mixing ratio (VMR) of these species increase with altitude. This is due to problems with the retrievals at high beta angle (the angle between the orbital plane and the Earth-Sun vector). Although some of the retrievals have problems, we are confident that the trends are generally reliable. The concentrations of HCFCs appear to be increasing with ACE-FTS, SLIMCAT and AGAGE all showing positive trends. ACE-FTS measurements of the decomposition products (COFCl and COCl2) do not show any significant trends. SLIMCAT data show a negative trend for COFCl which corresponds to the decrease in CFC-11, its assumed major source, during this time. COF2 measurements from ACE-FTS show an increasing trend, while SLIMCAT shows a decreasing trend again linked to its assumed production from CFCs. ClONO2 is highly photosensitive, thus the ACE-FTS occultations have been divided into local morning and evening occultations. Evening measurements of ClONO2 show a decreasing trend in VMR, while morning measurements show an increasing trend. The reason for this difference is not understood at this time. The SLIMCAT output used in this study was not saved as local sunrise and sunset: therefore, only 24 h mean fields are available for ClONO2. These SLIMCAT data show a decreasing trend. SLIMCAT and ACE-FTS both show an increasing trend in the VMR of HF and a decreasing trend in the VMR of HCl. These results illustrate the success of the Montreal Protocol in reducing ozone depleting substances. The reduction in anthropogenic chlorine emissions has led to a decrease in the VMR of stratospheric HCl. The replacement of CFCs with HCFCs has led to an increase in the VMR of HF in the stratosphere. As chlorine-containing compounds continue to be phased out and replaced by fluorine-containing molecules, it is likely that total atmospheric fluorine will continue increasing in the near future.  相似文献   

7.
Using a Fourier transform spectrometer setup we have measured the self-broadened half width, pressure shift, and line asymmetry coefficients for transitions in the 30012←00001 and 30013←00001 vibrational bands of carbon dioxide for four different temperatures. A total of 46 pure CO2 spectra were recorded at 0.008 and 0.009 cm−1 resolution and at pressures varying from a few Torr to nearly an atmosphere. The individual spectral line profiles have been fitted by a Voigt profile and a speed-dependent Voigt profile, to which we have added dispersion profiles to account for weak line mixing. A comparison of the sets of results obtained for each band showed no vibrational dependence of the broadening coefficients. The self-broadening and self-shift coefficients are compared to semiclassical calculations based on the Robert-Bonamy formalism and were found to be in good agreement. The line asymmetry results are compared to line mixing calculations based on the Energy Corrected Sudden (ECS) and Exponential Power Gap models.  相似文献   

8.
Collisional coupling between energy states in a molecule undergoing an optical transition can alter the line shape associated with the transition, an effect known as line mixing. Accounting for this effect in the analysis of remote sensing measurements of Earth's atmosphere by the Atmospheric Chemistry Experiment (ACE) yields reduced residuals, which leads to improved performance in the volume mixing ratio retrievals for some molecules. Analytical expressions are presented for the imaginary components of the polynomial ratios from the Humlicek algorithm, which provides approximate solutions to the complex probability function. These imaginary components are employed in the calculation of line mixing using the Rosenkranz first order approximation. Examples of line mixing in ACE measurements are presented, including a set of CH4 lines that exhibit both line mixing and speed dependence. An efficient, analytical approach is proposed for calculating line shapes with a combination of line mixing and speed dependence. FORTRAN routines for calculating line mixing effects are provided as a supplement to the paper.  相似文献   

9.

Purpose

The purpose was to investigate the altered hemispheric asymmetry in patients with mesial temporal lobe epilepsy with unilateral hippocampus sclerosis (MTLE/HS).

Materials and methods

This study examined the hemispheric asymmetry of regional gray matter (GM) and white matter (WM) volume among a group of 13 patients with left-sided MTLE/HS, a group of 10 patients with right-sided MTLE/HS and a group of 21 age- and gender- matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging.

Results

Compared to healthy controls, abnormal asymmetries were detected in the left-sided MTLE/HS patients. The left-sided MTLE/HS patients had more GM asymmetries (L<R) in the temporal lobes, including the inferior temporal gyrus, middle temporal gyrus and parahippocampal gyrus. There was significant asymmetry (L<R) in subcortical WM of the mesial temporal lobe in left-sided MTLE/HS patients. However, no significant difference was detected in terms of GM and WM asymmetry between the group with right-sided MTLE/HS and normal controls.

Conclusion

We should approach hemispheric asymmetry in left- and right-sided MTLE/HS patients differently. The study also demonstrates potential future use of VBM in detecting hemispheric asymmetries and lateralization of brain functions.  相似文献   

10.
The long-term trend of methane (CH4) in the lower stratosphere has been estimated for the 1985-2008 time period by combining spaceborne solar occultation measurements recorded with high spectral resolution Fourier transform spectrometers (FTSs). Volume mixing ratio (VMR) FTS measurements from the ATMOS (atmospheric trace molecule spectroscopy) FTS covering 120-10 hPa (∼16-30 km altitude) at 25°N-35°N latitude from 1985 and 1994 have been combined with Atmospheric Chemistry Experiment (ACE) SCISAT-1 FTS measurements covering the same latitude and pressure range from 2004 to 2008. The CH4 trend was estimated by referencing the VMRs to those measured for the long-lived constituent N2O to account for the dynamic history of the sampled airmasses. The combined measurement set shows that the VMR increase measured by ATMOS has been replaced by a leveling off during the ACE measurement time period. Our conclusion is consistent with both remote sensing and in situ measurements of the CH4 trend obtained over the same time span.  相似文献   

11.
High spectral resolution Fourier transform spectrometer (FTS) measurements of tropospheric carbon monoxide (CO) distributions show mixing ratios over Indonesia during October 2006 of ∼200 ppbv (10−9 per unit volume) in the middle troposphere. The elevated emissions were caused by intense and widespread Indonesian peat and forest fire emissions elevated compared to other years by the impact of a moderate El Niño/Soutern Oscillation (ENSO) event, which delayed that year's monsoon season and produced very dry conditions. Moderate resolution imaging spectrometer (MODIS) fire counts, atmospheric chemistry experiment (ACE) measurements of elevated mixing ratios of fire emission products and near infrared extinction, and back trajectory calculations for a sample measurement location near the time of maximum emissions provide additional evidence that the elevated 2006 emissions resulted primarily from the Indonesia fires. Lower CO mixing ratios measured by ACE and fewer MODIS fire counts in Indonesia during October 2005 indicate lower emissions than during 2006. Coincident profiles from the ACE agree within the uncertainties with those from the tropospheric emission spectrometer (TES) for pressure ranges and time periods with good TES sensitivity after accounting for its lower vertical sensitivity compared with the ACE FTS.  相似文献   

12.
Present and near future limb-sounding heterodyne instruments operating at millimeter or sub-millimeter wavelengths will be capable to gather profile information on a variety of stratospheric trace gases with relatively strong spectral features such as O3, H2O, O2 (temperature), N2O, HCl, ClO, HNO3, CH3Cl, and CO. Some species however, which are of particular interest for the understanding of stratospheric ozone chemistry, have only very weak spectral signatures, either due to their very small abundances and/or spectroscopic properties. These are amongst others the radical BrO, the potential bromine reservoir HBr, HOCl as a member of the chlorine family, and the hydroperoxyl radical HO2. Often, these target species are very difficult to detect and profiles have not yet been measured by space-borne sensors at all, even considering other spectral ranges and observation techniques. A study was therefore dedicated to the investigation of the retrieval of species with spectral features close to the detection limit of a typical state-of-the-art space-borne heterodyne receiver. A survey of the millimeter- and sub-millimeter spectral range was performed in order to identify appropriate spectral bands, followed by retrieval simulations for a representative atmospheric and instrumental scenario in order to explore the relative merits of the pre-selected bands and to derive associated parameters as measurement precision, altitude range and resolution. The feasibility of retrieving profile information from limb observations at sub-millimeter wavelengths of the “weak line” species under investigation is demonstrated. Optimal dedicated bands are recommended for HBr , BrO , and HOCl . For HO2 five more or less equivalent bands between 585 and are identified.  相似文献   

13.
Fourier transform spectrometers (FTS), thanks to their intrinsic advantages of high throughput, high spectral resolution and multiplex acquisition of spectral channels, offer a powerful tool for the characterisation of the Earth's atmosphere. The use of photon noise limited detectors in FTS instruments operating in the middle/far infrared spectral region permits high sensitivity emission spectroscopy measurements, without the limitations arising from the use of an external radiation source. The wide operating spectral range of FTS instruments makes possible simultaneous detection of different atmospheric chemical species that show rotational and vibrational spectral bands in the middle/far infrared region.Spatially resolved measurements of the concentration of the interesting species are of fundamental interest in the study of local phenomena in atmospheric chemistry and physics, and can be obtained through the use of various observation and data inversion techniques. Among these, the best results in terms of vertical resolution are achieved through the limb sounding observation technique from airborne platform.As an example of possibilities offered by the above considered technique, results obtained from the SAFIRE-A (Spectroscopy of the Atmosphere using Far InfraRed Emission-Airborne) during the Antarctic campaign APE-GAIA (Airborne Polar Experiment-Geophysica Aircraft In Antarctica, Ushuaia, Argentina, September–October, 1999) are presented.  相似文献   

14.
Age-related microstructural changes in brain white matter can be studied by utilizing indices derived from diffusion tensor imaging (DTI): apparent diffusion coefficient (ADC) and fractional anisotropy (FA). The objective of this study is to examine alterations in FA and ADC by employing exploratory voxel-based analysis (VBA) and region(s) of interest (ROI)-based analysis. A highly nonlinear registration algorithm was used to align the ADC and FA image volumes of different subjects to perform accurate voxel-level statistics for two age groups, as well as for hemispheric asymmetry for both age groups. VBA shows significant age-related decline in FA with frontal predominance (frontal white matter, and genu and anterior body of the corpus callosum), superior portions of a splenium and highly oriented fibers of the posterior limb of the internal capsule and the anterior and posterior limbs of the external capsule. Hemispheric asymmetry of FA, as assessed by VBA, showed that for the young-age group, significant right-greater-than-left asymmetry exists in the genu, splenium and body of the corpus callosum and that left-greater-than-right asymmetry exists in the anterior limb of the external capsule and in the posterior limb of the internal capsule, thalamus, cerebral peduncle and temporal-parietal regions. VBA of the hemispheric asymmetry of the middle-age group revealed much less asymmetry. Regions showing age-related changes and hemispheric asymmetry from VBA were, for a majority of the findings, in conformance with ROI analysis and with the known pattern of development and age-related degradation of fiber tracks. The study shows the feasibility of the VBA of DTI indices for exploratory investigations of subtle differences in population cohorts, especially when findings are not localized and/or known a priori.  相似文献   

15.
The results obtained by measuring the forward-backward asymmetry (A FB ) of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt s $ = 7 TeV at the LHC are presented. This asymmetry is measured as a function of the dilepton mass and rapidity in the dielectron and dimuon channels. The values of A FB were found for invariant masses of dileptons in the range of 40 ? M ll ? 600 GeV. The results for the effective weak mixing angle that were deduced from data on dimuon production in Drell-Yan processes are also presented. The respective data sample was collected by using the Compact Muon Solenoid (CMS) detector over the period spanning the years 2010 and 2011. The measured asymmetry and the effective weak mixing are consistent with the respective Standard Model predictions.  相似文献   

16.
In‐situ synchrotron XRD measurements of the magnetocaloric material LaFe11.8Si1.2 are used to understand virgin effects and asymmetry of the underlying first order magnetovolume transition. A remarkable change of the transition kinetics occurs after the first cycle, which we attribute to the formation of cracks originating from the volume change. Tomographic imaging revealed that the bulk material disintegrates via an interlocked state where fragments are loosely connected. Though cracks have opened between the fragments, the transition is sharp, which we attribute to magnetostatic interactions. In the cycled sample we find a strong asymmetry between the transition interval upon heating and cooling, which we explain by isostatic pressure acting on parts of the sample during the cooling transition. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
The McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak, Arizona, was used to record infrared high resolution absorption spectra of CO2 spectra broadened by O2. These spectra were analyzed to measure O2-broadened half-width coefficients, O2-induced pressure-shift coefficients and speed dependent parameters for transitions in the 30013←00001 and 30012←00001 bands of 16O12C16O located near 6227 and 6348 cm−1, respectively. All spectra were obtained at room temperature using the long path, 6 m base path White cell available at NSO. A multispectrum nonlinear least-squares fitting algorithm employing Voigt line shapes modified to include line mixing and speed dependence was used to fit simultaneously a total of 19 spectra in the 6120-6280 cm−1 (30013←00001) and 6280-6395 cm−1 (30012←00001) spectral regions. 16 of the 19 spectra analyzed in this work were self broadened and three spectra were lean mixtures of CO2 in O2. The volume mixing ratios of CO2 in the three spectra varied between 0.06 and 0.1. Lorentz half-width and pressure-induced shift coefficients were measured for all transitions in the P(50)-R(50) range in both vibrational bands. The results obtained from present analysis have been compared with measurements available in the literature for self-, air-, oxygen- and argon-broadening. No significant differences were observed between the broadening and shift coefficients of the two bands. The N2-broadened half-width and pressure-shift coefficients were computed from measured air- and O2-broadened width and shift coefficients.  相似文献   

18.
The TiO2–SiO2 thin film was prepared by self-assembly method by mixing SiO2 precursor with titanium precursor solution and aged to obtain a co-precipitation of silica and titanium crystals. Dip coating method was applied for thin film preparation on glass slide. The X-ray diffraction (XRD) of the self-assembly thin film had no characteristic property of SiO2 and even anatase TiO2 but indicated new crystal structure which was determined from the Fourier Transform Infrared Spectrophotometer (FTIR) as a hybridized Ti–O–Si bonding. The surface area and surface volume of the self-assembly sample were increased when SiO2 was incorporated into the film. The self-assembly TiO2–SiO2 thin film exhibited the enhanced photocatalytic decolorization of methylene blue (MB) dye. The advantages of SiO2 are; (1) to increase the adsorbability of the film and (2) to provide the hydroxyl radical to promote the photocatalytic reaction. The self-assembly thin film with the optimum molar ratio (SiO2:TiO2) as 20:80 gave the best performance for photocatalytic decolorization of MB dye with the overall efficiency of 81%.  相似文献   

19.
A theoretical sensitivity study of the influence of cirrus cloud properties on tropospheric NO2 columns retrieved from the spaceborne Ozone Monitoring Instrument (OMI) measurements is performed. It is conducted within the framework of the synergetic use of A-Train sensors to derive more representative trace gas products. We aim to study the potential effects of cirrus clouds on tropospheric NO2 retrievals using a retrieval algorithm that, unlike the OMI Standard and DOMINO algorithms, does not correct for the effects of clouds. The sensitivity study is based on the radiative transfer code SCIATRAN that performs both simulations of top of atmosphere (TOA) reflectances as measured by an OMI-like band and tropospheric NO2 column retrievals based on the differential optical absorption spectroscopy (DOAS) method. The results of the sensitivity study show that if a correction for cirrus clouds is not included in our simple retrieval that does not account for clouds in the first place, the tropospheric column can be underestimated by 55%. This underestimation depends strongly on cirrus parameters as, in order of importance, cloud fraction, cloud optical depth, asymmetry factor of cirrus cloud phase function and cloud top height. The perspective of the synergy between OMI and cloud information obtained from cloud-derived products of the A-Train is evaluated in two parts by applying a simple cloud correction scheme based on the independent pixel approximation (IPA). Firstly, we evaluated the tropospheric NO2 column retrievals error caused by uncertainties in cirrus cloud properties. Secondly we studied the influence of subpixel cloud optical depth variability on NO2 retrievals. From our simulations, it is demonstrated that the error will be reduced significantly if the cloud fraction is lower or equal to 0.5. In this case, the cloud fraction and the cloud optical depth must be known within accuracy less than 0.05% and 50%, respectively. The cloud top height and the asymmetry factor must be known within uncertainty of at least 1 km and less than 0.05, respectively. The latter result shows that the uncertainty of the asymmetry factor is a major source of error in the cloud correction for tropospheric NO2 retrieval in the presence of cirrus.  相似文献   

20.
In this paper, we report measured Rosenkranz N2- and O2-broadening, induced pressure-shift and mixing coefficients for OCS in the ν1 + ν3 band, using a multi-pressure fitting technique applied to the measured shapes of the lines, including the interference effects caused by the line overlaps. These measurements were made by analysing six laboratory absorption spectra recorded at 0.004 cm?1 resolution using the Fourier transform spectrometer Bruker IFS125HR located at the Laboratoire Interuniversitaire des Systèmes Atmosphériques, in Créteil. The spectra have been recorded in the 1850–3000 cm?1 wave number range at 295 K, using a multipass absorption cell with an optical path of 3.249 m. The total sample pressures ranged from 5.97 to 83.28 Torr with OCS volume mixing ratios between 0.001 and 0.013 in nitrogen or oxygen. We have been able to determine the N2- and O2-pressure-broadening coefficients of 81 ν1 + ν3 transitions with rotational quantum number J up to 50. The measured N2- and O2-broadening coefficients range from 0.0815 ± 0.0698 to 0.1169 ± 0.1027 cm?1 atm?1 at 295 K, respectively. Most of the measured pressure shifts are positive. The reported N2- and O2-induced pressure-shift coefficients vary from about ?0.0103 ± 0.0092 to 0.0097 ± 0.0092 cm?1 atm?1, respectively. We have examined the dependence of the measured broadening parameters on the quantum number m (m = ?J for the P branch and m = J + 1 for the R branch) and also developed an empirical expression to describe the broadening coefficients in terms of |m|. On average, this empirical expression reproduces the measured broadening coefficients to within 2%. Using a semi-classical Robert and Bonamy formalism, the theoretical broadening coefficients have been calculated at room temperature and compared with the experimental results. The theoretical results of the broadening coefficients are in very good overall agreement with the experimental data (2%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号