首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light is usually confined in photonic structures with a band gap or relatively high refractive index for broad scientific and technical applications. Here, a light confinement mechanism is proposed based on the photonic bound state in the continuum (BIC). In a low‐refractive‐index waveguide on a high‐refractive‐index thin membrane, optical dissipation is forbidden because of the destructive interference of various leakage channels. The BIC‐based low‐mode‐area waveguide and high‐Q microresonator can be used to enhance light–matter interaction for laser, nonlinear optical and quantum optical applications. For example, a polymer structure on a diamond membrane shows excellent optical performance that can be achieved with large fabrication tolerance. It can induce strong coupling between photons and the nitrogen–vacancy center in diamond for scalable quantum information processors and networks.

  相似文献   


2.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


3.
The terahertz (THz) radiation from InGaN/GaN dot‐in‐a‐wire nanostructures has been investigated. A submicrowatt THz signal is generated with just ten vertically stacked InGaN quantum dots (QDs) in each GaN nanowire. Based on the experimental results and analysis, a single quantum wire is expected to generate an output power as high as 10 pW, corresponding to 1 pW per dot. These structures are among the most efficient three‐dimensional quantum‐confined nanostructures for the THz emission. By applying a reverse bias along the wires in a light‐emitting device (LED) consisting of such nanostructures, the THz output power is increased more than fourfold. Based on THz and photoluminescence (PL) experiments, the mechanism for the THz emission is attributed to dipole radiation induced by internal electric fields and enhanced by external fields.

  相似文献   


4.
Subwavelength features in conjunction with light‐guiding structures have gained significant interest in recent decades due to their wide range of applications to particle and atom trapping. Lately, the focus of particle trapping has shifted from the microscale to the nanoscale. This few orders of magnitude change is driven, in part, by the needs of life scientists who wish to better manipulate smaller biological samples. Devices with subwavelength features are excellent platforms for shaping local electric fields for this purpose. A major factor that inhibits the manipulation of submicrometer particles is the diffraction‐limited spot size of free‐space laser beams. As a result, technologies that can circumvent this limit are highly desirable. This review covers some of the more significant advances in the field, from the earliest attempts at trapping using focused Gaussian beams, to more sophisticated hybrid plasmonic/metamaterial structures. In particular, examples of emerging optical trapping configurations are presented.

  相似文献   


5.
Efficient amplification of spoof surface plasmon polaritons (SPPs) is proposed at microwave frequencies by using a subwavelength‐scale amplifier. For this purpose, a special plasmonic waveguide composed of two ultrathin corrugated metallic strips on top and bottom surfaces of a dielectric substrate with mirror symmetry is presented, which is easy to integrate with the amplifier. It is shown that spoof SPPs are able to propagate on the plasmonic waveguide in broadband with low loss and strong subwavelength effect. By loading a low‐noise amplifier chip produced by the semiconductor technology, the first experiment is demonstrated to amplify spoof SPPs at microwave frequencies (from 6 to 20GHz) with high gain (around 20dB), which can be directly used as a SPP amplifier device. The features of strong field confinement, high efficiency, broadband operation, and significant amplification of the spoof SPPs may advance a big step towards other active SPP components and integrated circuits.

  相似文献   


6.
A Luneburg lens is a fascinating gradient refractive index (GRIN) lens that can focus parallel light on a perfect point without aberration in geometrical optics. Constructing a three‐dimensional (3D) Luneburg lens at optical frequencies is a challenging task due to the difficulty of fabricating the desired GRIN materials. Here, we present the practical implementation of a 3D Luneburg lens at optical frequencies. Such a 3D Luneburg lens is designed with GRIN 3D simple cubic metamaterial structures, and fabricated with dielectric metamaterials by femtosecond laser direct writing in the commercial negative‐photoresist IP‐L. Simulated and experimental results exhibit an interesting 3D ideal focus for the infrared light. The protocol for developing the 3D Luneburg lens with ideal focus would prompt the potential applications in integrated light‐coupled devices and lab‐on‐chip integrated biological sensors based on infrared light.

  相似文献   


7.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


8.
Periodic structures with a sub‐wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high‐precision lithography techniques that sub‐wavelength structures have found widespread application in the field of photonics. This review first provides an introduction to the physics of sub‐wavelength structures. An overview of the applications of sub‐wavelength structures is then given including: anti‐reflective coatings, polarization rotators, high‐efficiency fiber–chip couplers, spectrometers, high‐reflectivity mirrors, athermal waveguides, multimode interference couplers, and dispersion engineered, ultra‐broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub‐wavelength structures and their impact in photonics.

  相似文献   


9.
An all‐optical phase modulation method for the linear readout of integrated interferometric biosensors is demonstrated, merging simple intensity detection with the advantages offered by spectral interrogation. The phase modulation is introduced in a simple and cost‐effective way by tuning a few nanometers the emission wavelength of commercial laser diodes, taking advantage of their well‐known drawback of power–wavelength dependence. The method is applied to the case of a bimodal waveguide (BiMW) interferometric biosensor, fabricated with standard silicon technology and operated at visible wavelengths, rendering a detection limit of 4 × 10 7 refractive index units for bulk sensing. The biosensing capabilities of the phase‐linearized BiMW device are assessed through the quantitative immunoassay of C‐reactive protein, a key protein in inflammatory processes. This method can be applied to any modal interferometer.

  相似文献   


10.
The so‐called ‘flat optics’ that shape the amplitude and phase of light with high spatial resolution are presently receiving considerable attention. Numerous journal publications seemingly offer hope for great promises for ultra‐flat metalenses with high efficiency, high numerical aperture, broadband operation… We temperate the expectation by referring to the current status of metalenses against their historical background, assessing the technical and scientific challenges recently solved and critically identifying those that still stand in the way.

  相似文献   


11.
A major aim of researchers working in the field of optics and photonics is to mold the flow of light in optical structures and devices. In the regime of ballistic light propagation, transformation optics has given a certain boost, for which optical invisibility cloaking devices are striking examples. Our capability to mold the flow of light in the regime of diffuse light propagation in light‐scattering media has fallen behind—while diffuse light from clouds, white wallpaper, computer monitors, and light‐emitting diodes is literally all around us every day. In this review, we summarize progress in steering the flow of diffuse light in turbid media which was triggered by the mathematical analogy between electrostatics, magnetostatics, stationary heat conduction, and stationary light diffusion. We give an extensive tutorial introduction to the mathematics of the diffusion equation for light and its solutions, present an overview on the current experimental state‐of‐the‐art of simple core–shell invisibility cloaking, and compare these experiments with diffusion theory as well as with more advanced modelling based on Monte Carlo simulations. The latter approach enables spanning the bridge from diffusive to ballistic light propagation.

  相似文献   


12.
Plasmonic waveguides are promising in many applications because of their subwavelength field confinement, which can strongly enhance light‐matter interactions. Nevertheless, how to efficiently evaluate their Kerr nonlinear performance is still an open question because of the presence of relatively large linear losses. Here a simple and versatile figure of merit (FOM) is proposed for Kerr nonlinear waveguides with linear losses. To derive the FOM, a generalized full‐vectorial nonlinear Schrödinger equation governing nonlinear pulse propagation in a lossy waveguide is developed, and an approximate analytic solution of the degenerate four wave mixing conversion efficiency is derived and validated. The effectiveness of the FOM is verified with an all‐plasmonic and a hybrid‐plasmonic waveguide configuration. Rigorous results show that the optimal waveguide length for the highest conversion efficiency is ln 3 times the attenuation length. At this length, the upper limits of the conversion efficiency and the nonlinear phase shift are determined by the FOM. These results provide fundamental theory and useful guidance in exploring plasmonic waveguides for nonlinear optical applications.

  相似文献   


13.
Quantitative phase imaging (QPI), a method that precisely recovers the wavefront of an electromagnetic field scattered by a transparent, weakly scattering object, is a rapidly growing field of study. By solving the inverse scattering problem, the structure of the scattering object can be reconstructed from QPI data. In the past decade, 3D optical tomographic reconstruction methods based on QPI techniques to solve inverse scattering problems have made significant progress. In this review, we highlight a number of these advances and developments. In particular, we cover in depth Fourier transform light scattering (FTLS), optical diffraction tomography (ODT), and white‐light diffraction tomography (WDT).

  相似文献   


14.
The generation of sub‐optical‐cycle, carrier–envelope phase‐stable light pulses is one of the frontiers of ultrafast optics. The two key ingredients for sub‐cycle pulse generation are bandwidths substantially exceeding one octave and accurate control of the spectral phase. These requirements are very challenging to satisfy with a single laser beam, and thus intense research activity is currently devoted to the coherent synthesis of pulses generated by separate sources. In this review we discuss the conceptual schemes and experimental tools that can be employed for the generation, amplification, control, and combination of separate light pulses. The main techniques for the spectrotemporal characterization of the synthesized fields are also described. We discuss recent implementations of coherent waveform synthesis: from the first demonstration of a single‐cycle optical pulse by the addition of two pulse trains derived from a fiber laser, to the coherent combination of the outputs from optical parametric chirped‐pulse amplifiers.

  相似文献   


15.
The coupling of atomic and photonic resonances serves as an important tool for enhancing light‐matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic‐cladding wave guides, the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator is experimentally demonstrated. Specifically, cavity‐atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances is observed. Moreover, significant enhancement of the efficiency of all optical switching in the V‐type pump‐probe scheme is demonstrated. The coupled system of micro‐ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, and Purcell enhancement.

  相似文献   


16.
A compact 64‐channel hybrid demultiplexer based on silicon‐on‐insulator nanowires is proposed and demonstrated experimentally to enable wavelength‐division‐multiplexing and mode‐division‐multiplexing simultaneously in order to realize an ultra‐large capacity on‐chip optical‐interconnect link. The present hybrid demultiplexer consists of a 4‐channel mode multiplexer constructed with cascaded asymmetrical directional‐couplers and two bi‐directional 17 × 17 arrayed‐waveguide gratings (AWGs) with 16 channels. Here each bi‐directional AWG is equivalent as two identical 1 × 16 AWGs. The measured excess loss and the crosstalk for the monolithically integrated 64‐channel hybrid demultiplexer are about ‐5 dB and ‐14 dB, respectively. Better performance can be achieved by minimizing the imperfections (particularly in AWGs) during the fabrication processes.

  相似文献   


17.
The recent progress in integrated quantum optics has set the stage for the development of an integrated platform for quantum information processing with photons, with potential applications in quantum simulation. Among the different material platforms being investigated, direct‐bandgap semiconductors and particularly gallium arsenide (GaAs) offer the widest range of functionalities, including single‐ and entangled‐photon generation by radiative recombination, low‐loss routing, electro‐optic modulation and single‐photon detection. This paper reviews the recent progress in the development of the key building blocks for GaAs quantum photonics and the perspectives for their full integration in a fully‐functional and densely integrated quantum photonic circuit.

  相似文献   


18.
A semiconductor optical amplifier at 2.0‐µm wavelength is reported. This device is heterogeneously integrated by directly bonding an InP‐based active region to a silicon substrate. It is therefore compatible with low‐cost and high‐volume fabrication infrastructures, and can be efficiently coupled to other active and passive devices in a photonic integrated circuit. On‐chip gain larger than 13 dB is demonstrated at 20 °C, with a 3‐dB bandwidth of ∼75 nm centered at 2.01 µm. No saturation of the gain is observed for an on‐chip input power up to 0 dBm, and on‐chip gain is observed for temperatures up to at least 50 °C. This technology paves the way to chip‐level applications for optical communication, industrial or medical monitoring, and non‐linear optics.

  相似文献   


19.
20.
Intravital imaging of large specimens is intrinsically challenging for postembryonic studies. Selective plane illumination microscopy (SPIM) has been introduced to volumetrically visualize organisms used in developmental biology and experimental genetics. Ideally suited for imaging transparent samples, SPIM can offer high frame rate imaging with optical microscopy resolutions and low phototoxicity. However, its performance quickly deteriorates when applied to opaque tissues. To overcome this limitation, SPIM optics were merged with optical and optoacoustic (photoacoustic) readouts. The performance of this hybrid imaging system was characterized using various phantoms and by imaging a highly scattering ex vivo juvenile zebrafish. The results revealed the system's enhanced capability over that of conventional SPIM for high‐resolution imaging over extended depths of scattering content. The approach described here may enable future visualization of organisms throughout their entire development, encompassing regimes in which the tissue may become opaque.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号