首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
With the aid of the recently reported technique of adding up phase images modulo 2π that correspond to stepwise applied load increments, the fringe density that can be achieved in electronic speckle pattern interferometry (ESPI) has been substantially improved. This technique also allows the measurement of much larger deformations than were hitherto possible with ESPI. The analytical power of the method is demonstrated in the measurement of high local displacement gradients in carbon fibre-reinforced plastics (CFRPs). In-plane and out-of-plane displacement field measurements, performed with one single optical instrument, are compared with finite-element models. This paper reports how the technique is used to detect and quantify damage in fatigued CFRP laminates via its effect on the surface displacement field. Moreover, the measured displacement fields are used to validate a finite-element damage model. The correctness of the delamination measurement is verified with the aid of ultrasonic C-scan reference results.  相似文献   

2.
A digital speckle pattern shearing interferometer is presented which utilizes a single birefringent wedge. Two orthogonally polarized images of an object measured are sheared by the wedge, and the bias phase difference between two polarized images is shifted by translating the wedge. The phase shifting technique applied to speckle pattern shearing interferometry makes it possible to analyze a slope and surface strain numerically. The fringe formation in the present interferometer is analyzed with statistical theory. Experimental results are also presented in two cases: (1) measurement of a slope and normal displacement with a single illumination; (2) simultaneous and separate measurement of a slope and surface strain with two symmetrical illuminations.  相似文献   

3.
王柳  陈超  高楠  张宗华 《应用光学》2018,39(3):373-378
结构光投影方法在三维形貌测量中应用广泛,但是由于被测物体表面反射率变化范围较大,过度曝光会导致相位信息无法获取。而传统的高动态范围扫描技术步骤复杂,耗时较长。文中提出一种自适应条纹投影技术,向待测物体表面投射较高灰度级的条纹图,判断并标记过度曝光点。降低投射强度后通过非线性最小二乘法拟合来确定每个饱和像素点最适合的最大输入灰度,用重新生成的自适应条纹图来采集图像并进行相位计算和三维形貌恢复。通过实验验证,该方法可以对物体表面的高反光区域进行有效测量,避免过度饱和,仿真误差在0.02 mm范围内,实测误差约为0.14 mm,实际实验对过曝点的补偿率可达到99%。  相似文献   

4.
This paper describes the use of optical fringe projection method for 3D surface profile and deformation measurement of micro-components. In this method, sinusoidal linear fringes are projected on a micro-component surface by a grating phase shifting projector and a long working distance microscope (LWDM). The image of the fringe pattern is captured by a high-resolution CCD camera and another LWDM and processed by phase-shifting technique. A simple procedure is described which enables calibration of the optical set-up for subsequent quantitative measurement of micro-components of unknown shapes. This method is relatively simple and accurate, and is capable of conducting fully automated measurements. In this paper, two micro-components, a micro-mirror (0.1 mm×0.1 mm) and a micro-electrode pad are used to demonstrate deformation measurement and microscopic surface contouring.  相似文献   

5.
This paper describes the analysis of phase distortion in phase-shifted fringe projection method. A phase distortion occurs when the phase shifting technique is applied to extract the phase values from projected fringe patterns in surface contouring. The phase distortion will induce measurement errors especially in the measurement of micro-components. The cause of such phase distortion is investigated and the influence of phase distortion on the measurement of micro-components is discussed. To eliminate the phase distortion, a continuous wavelet transform (CWT) is employed to extract phase values from object surface modulated fringe patterns. Principle of the proposed CWT phase extraction method is described and experiments are conducted to verify the proposed method. It is shown that by the use of CWT phase extraction method phase distortion induced in conventional phase-shifting technique can be completely eliminated.  相似文献   

6.
By combining speckle interferometry (SI) measurements with speckle photography, the fringe visibility can be kept high despite the presence of a large bulk or rotating motion of the object. This combined technique improves the usability and measuring range of both pulsed and phase-stepped SI-methods. This paper reviews the theory of fringe formation in SI and shows some recent applications of this combined technique.  相似文献   

7.
Surface Shape Measurement by Phase-Shifting Digital Holography   总被引:3,自引:0,他引:3  
Surface contouring by phase-shifting digital holography is proposed that provides surface height from a change of reconstructed phase due to tilting of the object illumination. After phase-unwrapping it directly delivers surface shape. Its sensitivity depends on the tilting angle as well as on the initial incident angle. Although the sensitivity is the same as in the conventional fringe projection, a simpler setup is used without imaging lens and measurement depth is increased due to numerical focusing. We also performed noise suppression by employing nonlinear image-data compression technique that considers amplitude values and attained standard height deviation less than 30 #x03BC;m from a flat surface.  相似文献   

8.
散斑条纹图的自适应窗口滤波方法   总被引:2,自引:0,他引:2  
杨夏  于起峰  伏思华 《光学学报》2007,27(4):25-630
针对散斑噪声很难用常用的滤波方法进行滤除,在已有等值线滤波方法的基础上,提出一种更优的自适应窗口滤波方法。由于等值线窗口是在条纹方向图的基础上得到的,深入研究条纹方向的求取方法,提出了一种更为可靠的条纹方向求取算法,在得到高精度条纹方向的同时,还能估计出条纹的密度。使用等值线窗口技术,保持了窗口形状的自适应能力,然后利用对条纹密度的估计,根据条纹的宽度来确定滤波窗口的大小,实现了滤波窗口大小的自适应。最后,根据条纹方向和滤波后的图像可以直接得到条纹密度变化较大的单幅散斑图的相位结果。  相似文献   

9.
It is important for the study of digital image processing to remove noises and enhance images because of various noises in images. The article is concerned with the recursive algorithm-filtering technique, which is capable of effectively removing noise and rapidly leading to a continuous gray-level distribution of a random image. By applying the method on speckle images of defects of rubber material, it is shown that this technique is the most effective and speedy method for the filtering of ESPI fringe patterns. Comparing the images before and after filtering, we can see the advantages of the novel technique clearly. It can increase the accuracy of measurement both in phase measurement and in quantitative evaluations of defects.  相似文献   

10.
Digital speckle interferometry for assessment of surface roughness   总被引:1,自引:0,他引:1  
In this work, the principle of interferometry is used to assess the surface roughness of the machined surfaces. Interferometry produces an interference fringe pattern when two or more light waves interact with each other. It is one of the important tool for precision optical metrology and testing. Well-known advantages of the phase shifting interferometry include high measurement accuracy, rapid measurement, good result even with low contrast fringes and that the polarity of the wave front can be determined. In fringe projection techniques, a known optical fringe pattern is projected onto the surface of interest. The fringe pattern on the surface is perturbed in accordance with the profile of the test surface, thereby enabling direct derivation of surface profile.In this work, an attempt has been made to assess the surface roughness using a speckle fringe analysis method of five frame phase shift algorithm for machined surface (ground surface). As these fringes are too noisy, advanced filtering technique has been used so as to reduce noise and to get improved wrapped phase map from the phase shifted fringes. A phase unwrapping software has been developed using discrete cosine transform (DCT) to generate the three-dimensional (3-D) profiles. Finally, it is compared with Ra values measured using a mechanical stylus instrument, showing good agreement.  相似文献   

11.
散斑噪声是激光干涉时的普遍现象,其覆盖被测表面对应区域的形状信息,造成测量误差。针对斜入式激光干涉测量中散斑噪声的特点,提出一种基于物体像的散斑噪声的识别方法。该方法通过统计物体像中有效测量区域和背景区域内灰度分布的特点,自动计算出判定散斑噪声的上下阈值。基于物体像与干涉条纹图像间微米级的映射关系,得到干涉条纹图像中散斑噪声的位置。设计了相关实验,对干涉条纹图像中识别出的散斑噪声区域进行修补,消除了包裹相位图中一个条纹周期内相邻像素点间大于π的相位突变。  相似文献   

12.
大剪切电子散斑干涉的载频调制与位移场测量   总被引:6,自引:0,他引:6  
将电子散斑干涉场的载波调制引入到大剪切电子散斑干涉中,通过对参考物的微小偏转引入载波条纹;利用傅里叶变换法,解调出了变形场的相位,从而实现了物体变形场的精确测量。讨论了大剪切载频的调制机理,理论分析表明,调制条纹的空间频率与参考面偏转的角度成正比;因此,控制参考面的偏转角度可实现不同位移量系统的调制。利用中心加载周边固定圆盘进行了典型实验,实验结果证明在大剪切电子散斑干涉技术中可以通过参考面的旋转高质量地实现电子散斑干涉条纹的调制,求解位移场。该系统具有系统简单,不需要专门引入参考光,条纹质量好等优点。该技术可扩展电子散斑干涉的应用范围,有一定的实际应用价值。  相似文献   

13.
This paper presents a new fringe projection method for surface-shape measurement that uses background and amplitude encoded high-frequency fringe patterns. The background and amplitude, combined as a codeword, identify the wrapped phase fringe order to partially unwrap the phase to a low frequency. The low-frequency wrapped phase map is then directly used to reconstruct the surface based on geometry constraints without requiring additional images as in other temporal phase-unwrapping methods. Measurements performed on a double-hemisphere, mask, and manikin head, using projected fringe patterns with 48 periods, demonstrated the ability of the method to perform 3D shape measurement with only four projected patterns and captured images, using a single camera and projector.  相似文献   

14.
A new method of using time-averaged digital speckle pattern interferometry for the quantitative measurement of vibration amplitude was developed. Signal processing techniques especially the Hilbert transformation for quantitative evaluation of the Bessel fringes obtained in time-averaged digital speckle pattern interferometry were explored. The quadrature signal after Hilbert transformation is equivalent to a 90° phase-shifted interferogram for a monotonically increasing or decreasing phase function. An algorithm was developed for Bessel fringe contrast enhancement and phase extraction. The techniques were tested numerically and experimentally. Sub-fringe quantification of the time-averaged vibration fringes is realised with the proposed method. Compared with the commonly used phase shift method which requires a minimum of two images for image processing, this method requires only one fringe pattern for data extraction.  相似文献   

15.
A simple and accurate algorithm (phase scanning method) is proposed for 3D surface contouring and dynamic response determination of a vibrating object. A sinusoidal fringe pattern is projected onto a low-frequency vibrating object by a programmable liquid crystal display projector. The fringe patterns are captured by a high-speed CCD camera with a telecentric gauging lens. Phase values are evaluated point by point using phase scanning method. From the phase values of each point on the object, the contour of the specimen at different instants of vibration can be retrieved. In this paper, a small vibrating coin is used to demonstrate the validity of the method and the experimental results are compared with test results on a stationary coin using four-step phase shifting and fast Fourier transform methods. The technique is especially useful in applications where the vibrating object has a complicated shape.  相似文献   

16.
Accurate layer-to-layer alignment, which is of prime importance for the fabrication of multilayer nanostructures in integrated circuits, is one of the main obstacles for imprint lithography. Current alignment measurement techniques commonly involve an image detection process for coarse alignment followed by a grating interference process for fine alignment. Though this kind of two-level alignment system is reasonable for measurement, when it is used in real imprint lithography, it is inconvenient because of the existence of a complex loading system that needs space for alignment. In this study, we propose a fine alignment method using only image detection using grating images and digital moiré fringe technology. In this method, though the gratings are also selected as alignment marks for accurate measurement, they do not interfere with the physics. The grating images captured from the template and wafer are used to measure angular displacement and to form parallel digital moiré fringes. The relative linear displacement between the template and wafer is determined by detecting the spatial phase of parallel digital moiré fringes. Owing to the magnification effect of digital moiré fringes, this method is capable of generating accurate measurements. According to the experimental results, this digital moiré fringe technique is accurate to less than 10 nm. In addition, without a complex grating interference system, this method has the advantage of being easy to operate.  相似文献   

17.
This paper describes significant developments in methods for the automatic, quantitative analysis of interferograms. All areas of analysis have been considered: fringe field generation, pre-processing, and phase unwrapping.

A new quasi-heterodyne holographic technique is described in which the image is reconstructed using a single beam. The errors in the reconstructed fringe field are mainly linear in form, and an error compensation scheme is proposed. The final error in the phase measurement using automatic analysis is λ/40.

The process of image smoothing by an averaging filter is considered to reduce the effects of random noise. It is shown that by measuring the signal-to-noise ratio of the fringe field an optimum degree of smoothing may be applied. This is demonstrated on holographic and electronic speckle pattern interferometry (ESPI) data.

Two methods for cosinusoidal fringe image combination are compared, using three or four fields. It is shown that an automatic analysis can be achieved using four phase stepped images.

A new algorithm to automatically unwrap the phase of complex fringe patterns is described. The fringe field is segmented into small rectangular areas, called tiles. This allows local data to be obtained on fringe consistency and density. A confidence tree can then be formed to produce an optimal solution for the whole field. Results are presented and discussed for both holographic and ESPI data.  相似文献   


18.
This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.  相似文献   

19.
A new image processing technique is described that has been found well suited for the fully automatic evaluation of Young's fringes in speckle pattern photography. The basic idea is fringe pattern analysis by creating synthetic images and fitting them to the image picked up by a TV camera. High speed fringe generation and comparison is achieved using a videoprocessor. A theoretical discussion and experimental results show the efficiency of this method for subfringe evaluation, i.e. the measurement of displacements well below the mean speckle size.  相似文献   

20.
A new method of absolute phase evaluation for three-dimensional (3D) profile measurement using fringe projection is presented, which combines the gray code and the phase shift technique. Two kinds of fringe patterns are projected onto the object surface respectively, one is sinusoidal intensity distribution used for phase demodulation and the other is gray code fringe pattern for unwrapping. These images are acquired by camera and stored into computer. The absolute phase is obtained by analyzing these images. The validity of this method is verified experimentally. The method is superior to other phase unwrapping methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号