首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendental functions. In some cases, just a few terms in a power series make it possible to reconstruct a transcendental function exactly. Numerical convergence of the factor approximants is checked for several examples. A special attention is paid to the possibility of extrapolating the behavior of functions, with arguments tending to infinity, from the related asymptotic series at small arguments. Applications of the method are thoroughly illustrated by the examples of several functions, nonlinear differential equations, and anharmonic models.  相似文献   

2.
The method of self-similar factor approximants is applied to calculating the critical exponents of the O(N)-symmetric ϕ4 theory and of the Ising glass. It is demonstrated that this method, being much simpler than other known techniques of series summation in calculating the critical exponents, at the same time, yields the results that are in very good agreement with those of other rather complicated numerical methods. The principal advantage of the method of self-similar factor approximants is the combination of its extraordinary simplicity and high accuracy.  相似文献   

3.
The problem is analysed for extrapolating power series, derived for an asymptotically small variable, to the region of finite values of this variable. The consideration is based on the self-similar approximation theory. A new method is suggested for defining the odd self-similar factor approximants by employing an optimisation procedure. The method is illustrated by several examples having the mathematical structure typical of the problems in statistical and chemical physics. It is shown that the suggested method provides a good accuracy even when the number of terms in the perturbative power series is small.  相似文献   

4.
Euler方程某些问题的解具有自相似特点,可以使用更准确的方法求解.提出了两种数值方法,分别称为自相似和准自相似方法,新方法可以使用现有守恒律方程的数值格式,无须设计特殊方法.对一维激波管问题、二维Riemann问题、激波反射以及激波折射问题进行了数值计算.对自相似Euler方程,一维计算结果显示数值解基本等同于精确解,二维结果也比现有文献计算的结果有更高的分辨率.对准自相似Euler方程,新方法可以求解不具有自相似性但接近自相似的问题,并在计算时间足够长时可以取得自相似Euler方程的效果.数值求解自相似Euler方程对自相似问题的研究,高分辨率、高精度格式的设计乃至Euler方程的精确解都有重要启示.   相似文献   

5.
An integrable chain connected to the isospectral evolution of the polynomials of type R–I introduced by Ismail and Masson is presented. The equations of motion of this chain generalize the corresponding equations of the relativistic Toda chain introduced by Ruijsenaars. We study simple self-similar solutions to these equations that are obtained through separation of variables. The corresponding polynomials are expressed in terms of the Gauss hypergeometric function. It is shown that these polynomials are stable (up to shifts of the parameters) against Darboux transformations of the generalized chain.  相似文献   

6.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

7.
We study the Whitham equations for the Camassa-Holm equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the initial value problem of the Whitham equations. When the initial values are given by a step function, the Whitham solution is self-similar. When the initial values are given by a smooth function, the Whitham solution exists within a cusp in the x-t plane. On the boundary of the cusp, the Whitham solution matches the Burgers solution, which exists outside the cusp.  相似文献   

8.
The existence of generalized self-similar solutions to the system of continuity and Poisson equations is analyzed for the problem of evolution of impact ionization waves (IIWs). It is shown that, for any physically reasonable electric-field dependence of the impact ionization coefficients, there exist only exponentially self-similar (“limiting”) asymptotic solutions. These solutions describe IIWs whose spatial scales and propagation velocities increase exponentially with time. Conditions are found for the existence of plane, cylindrical, and spherical waves of this type; their structure is described; analytical relations between the key parameters are derived; and effects of recombination (or attachment) and tunnel ionization are analyzed. It is shown that these IIWs are intermediate asymptotics of numerical solutions to the corresponding Cauchy problems. The most important and interesting type of exponentially self-similar IIWs are streamers in a uniform electric field. The simplest comprehensive and explicit model describing their evolution is a spherical IIW.  相似文献   

9.
Homoclinic and heteroclinic solutions are two important concepts that are used to investigate the complex properties of nonlinear evolutionary equations. In this Letter, we perform hyperbolic and linear stability analysis, and prove the existence of homoclinic and heteroclinic solutions for two-dimensional cubic Ginzburg-Landau equation with periodic boundary condition and even constraint. Then, using the Hirota's bilinear transformation, we find the closed-form homoclinic and heteroclinic solutions. Moreover, we find that the homoclinic tubes and two families of heteroclinic solutions are asymptotic to a periodic cycle in one dimension.  相似文献   

10.
The multiple soliton solutions of the approximate equations for long water waves and soliton-like solutions for the dispersive long-wave equations in 2+1 dimensions are constructed by using an extended homogeneous balance method. Solitary wave solutions are shown to be a special case of the present results. This method is simple and has a wide-ranging practicability, and can solve a lot of nonlinear partial differential equations.  相似文献   

11.
In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.  相似文献   

12.
In several papers we recently obtained simple high-energy asymptotic expansions for the solutions and eigenvalues of wave equations containing generalized superpositions of Yukawa potentials. In the present article we extend these investigations to the calculation of phase shifts and eigenvalues of the Lippmann-Schwinger kernel. We also calculate corresponding Padé approximants and illustrate, by means examples, their usefulness, even in regions of low energies.  相似文献   

13.
It is shown that the resonant Davey-Stewartson (RDS) system can pass the Painlev test. By truncating the Laurent series to a constant level term, a dependent variable transformation is naturally derived, which leads to the bilinear forms of the RDS system. From the bilinear equations, through making suitable assumptions, some new soliton solutions are obtained. Some representative profiles of the solitary waves are graphically displayed including the two-line soliton solution, “Y” soliton solution, “V” soliton solution, solitoff, etc. The solutions might be useful to describe the nonlinear phenomena in Madelung fluids, capillarity fluids, and so on.  相似文献   

14.
In this Letter, a variable-coefficient extended mapping method is proposed to seek new and more general exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients and (2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, many new and more general exact solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear evolution equations in mathematical physics.  相似文献   

15.
李凯辉  刘汉泽  辛祥鹏 《物理学报》2016,65(14):140201-140201
本文运用李群分析的方法研究了一类高阶非线性波方程,得到了五阶非线性波方程的对称以及方程的最优系统,进而运用幂级数的方法,求得了方程的精确幂级数解.最后,给出了五阶非线性波方程的一些守恒律.  相似文献   

16.
In order to investigate a complicated physical system, it is convenient to consider a simple, easy to solve model, which is chosen to reflect as much physics as possible of the original system, as an ideal approximation. Motivated by this fundamentalidea, we propose a novel asymptotic method, the nonsensitive homotopy-Padé approach. In this method, homotopy relations are constructed to link the original system with an ideal, solvable model. An artificial homotopy parameter is introduced to the homotopy relations as the normal perturbation parameter to generatethe perturbation series, and is used to implement the Padé approximation. Meanwhile, some other auxiliary nonperturbative parameters, which are used to control the convergence of the perturbation series, are inserted to the approximants, and are fixed via the principle of minimal sensitivity. The method is used to study the eigenvalue problem of the quantum anharmonic oscillators. Highly accurate numerical results show its validity. Possible further studies on this method are also briefly discussed.  相似文献   

17.
In this Letter, the Exp-function method is generalized to construct N-soliton solutions of a KdV equation with variable coefficients. As a result, 1-soliton, 2-soliton and 3-soliton solutions are obtained, from which the uniform formula of N-soliton solutions is derived. It is shown that the Exp-function method may provide us with a straightforward and effective mathematical tool for generating N-soliton solutions of nonlinear evolution equations in mathematical physics.  相似文献   

18.
Jun-ting Pan 《Physics letters. A》2009,373(35):3118-3121
A new auxiliary equation method, constructed by a first order nonlinear ordinary differential equation with at most an eighth-degree nonlinear term, is first proposed for exploring more exact solutions to nonlinear evolution equations. Being concise and straightforward, the method, with the aid of symbolic computation, is applied to the Sharma-Tasso-Olver model, and some new exact solitary wave solutions are obtained. The approach is also applicable to searches for exact solutions of other nonlinear evolution equations.  相似文献   

19.
A new approach to the perturbative analysis of dynamical systems, which can be described approximately by soliton solutions of integrable non-linear wave equations, is employed in the case of small-amplitude solutions of the ion acoustic wave equations of plasma physics. Instead of pursuing the traditional derivation of a perturbed KdV equation, the ion velocity is written as a sum of two components: elastic and inelastic. In the single-soliton case, the elastic component is the full solution. In the multiple-soliton case, it is complemented by the inelastic component. The original system is transformed into two evolution equations: An asymptotically integrable Normal Form for ordinary KdV solitons, and an equation for the inelastic component. The zero-order term of the elastic component is a single-soliton or multiple-soliton solution of the Normal Form. The inelastic component asymptotes into a linear combination of single-soliton solutions of the Normal Form, with amplitudes determined by soliton interactions, plus a second-order decaying dispersive wave. Satisfaction of a conservation law by the inelastic component and of mass conservation by the disturbance to the ion density is determined solely by the initial data and/or boundary conditions imposed on the inelastic component. The electrostatic potential is a first-order quantity. It is affected by the inelastic component only in second order. The charge density displays a triple-layer structure. The analysis is carried out through the third order.  相似文献   

20.
Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time; such BDEs can be seen therefore as metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil’s staircases and “fractal sunbursts.” All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades of loading and failure in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid-earth problems. The former have used small systems of BDEs, while the latter have used large hierarchical networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (“partial BDEs”) and discuss connections with other types of discrete dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号