首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using the Unruh-Verlinde temperature obtained by the idea of entropy force,we directly calculated the partition functions of Boson field in Reissner-Nordstro¨m spacetime with quantum statistical method.We obtain the expression of the black hole quantum statistical entropy.We find that the term is proportional to the area of black hole horizon and the logarithmic correction term appears.Our result is valid for flat spacetime.  相似文献   

2.
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately.A comparative study of noncommutative charged black hole and usual Reissner–Nordstr¨om black hole has been done.The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.  相似文献   

3.
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of the energy-momentum dispersion relation (MDR), which plays an important role in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Sehwarzschild black hole and Reissner-Nordstrom black hole respectively based on MDR.  相似文献   

4.
We analytically study the superradiant instability of charged massless scalar field in the background of D-dimensional Reissner–Nordstr¨om(RN) black hole caused by mirror-like boundary condition. By using the asymptotic matching method to solve the Klein–Gordon equation that governs the dynamics of scalar field, we have derived the expressions of complex parts of boxed quasinormal frequencies, and shown they are positive in the regime of superradiance.This indicates the charged scalar field is unstable in D-dimensional Reissner–Nordstr¨om(RN) black hole surrounded by mirror. However, the numerical work to calculate the boxed quasinormal frequencies in this system is still required in the future.  相似文献   

5.
This paper studies the thermodynamic geometry of the Reissner–Nordstr?m-anti-de Sitter(RN-AdS) black hole via detection of the non-local observables in the dual field theory, including the entanglement entropy and equal-time two-point correlation function. With the dimensional analysis, we construct the principle of corresponding states of black hole thermodynamics. As a result, our findings can be applied to black holes with different Ad S backgrounds. In this sense,the probe of the thermodynam...  相似文献   

6.
赵仁  武月琴  张丽春 《中国物理 B》2009,18(5):1749-1754
<正>By using the entanglement entropy method,this paper calculates the statistical entropy of the Bose and Fermi fields in thin films,and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string.Here,the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string.Taking into account the effect of the generalized uncertainty principle on quantum state density,it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model.These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect.The ultraviolet cut-off in the brick-wall model is not reasonable.The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon.From the viewpoint of quantum statistical mechanics,the correction value of Bekenstein-Hawking entropy is obtained.This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.  相似文献   

7.
We are going to prove that the Monopole and the Coulomb fields are duals within the unifying structure provided by the Reissner–Nordstr¨om spacetime. This is accomplished when noticing that in order to produce the tetrad that locally and covariantly diagonalizes the stress-energy tensor, both the Monopole and the Coulomb fields are necessary in the construction. Without any of them it would be impossible to express the tetrad vectors that locally and covariantly diagonalize the stress-energy tensor. Then, both electromagnetic fields are an integral part of the same structure, the Reissner–Nordstr¨om geometry.  相似文献   

8.
The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.  相似文献   

9.
We investigate phase-plane analysis of general relativistic orbits in a gravitational field of the Reissner–Nordstr?m-type regular black hole spacetime. We employ phase-plane analysis to obtain different phase-plane diagrams of the test particle orbits by varying charge q and dimensionless parameter β, where β contains angular momentum of the test particle. We compute numerical values of radii for the innermost stable orbits and corresponding values of energy required to place the test particle in orbits. Later on, we employ similar analysis on an Ayón–Beato–García(ABG) regular black hole and a comparison regarding key results is also included.  相似文献   

10.
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon‘s area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.  相似文献   

11.
Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole   总被引:1,自引:0,他引:1  
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon‘s area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.  相似文献   

12.
叶伯兵  陈菊华  王永久 《中国物理 B》2017,26(9):90202-090202
We construct a family of d-dimensional Reissner–Nordstr o¨m-Ad S black holes inspired by noncommutative geometry. The density distribution of the gravitational source is determined by the dimension of space, the minimum length of spacetime l, and other parameters(e.g., n relating to the central matter density). The curvature of the center and some thermodynamic properties of these black holes are investigated. We find that the center of the source is nonsingular for n 0(under certain conditions it is also nonsingular for-2 n 0), and the properties at the event horizon, including the Hawking temperature, entropy, and heat capacity, are regular for n -2. Due to the presence of l, there is an exponentially small correction to the usual entropy.  相似文献   

13.
We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bekenstein-Hawking's area-entropy formula. Then, by comparing with the original brick-wall method, we find that the result obtained by the thin film method is more reasonable avoiding some drawbacks, such as little mass approximation, neglecting logarithm term, and taking the term L^3 as a contribution of the vacuum surrounding the black hole, and the physical meaning of the entropy is more clearer.  相似文献   

14.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein- Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Vedinde formula is derived. In our calculation, Bekenstein Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.  相似文献   

15.
张丽春  武月琴  赵仁 《中国物理》2004,13(6):974-978
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n 2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole‘s entropy which contains two horizons (a black hole‘s horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole‘s horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole‘s entropy and horizon‘s area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.  相似文献   

16.
By using the method of quantum statistics, we derive directly the partition functions of bosonic and fermionic field in the black hole space-time with different temperatures on horizon surface. The statistical entropy of the black hole is obtained by an improved brick-wall method. When we choose a proper parameter in our results, we can obtain that the entropy of the black hole is proportional to the area of horizon. In our result, there do not exist any neglected term or divergent logarithmic term as given in the original brick-wall method. We have avoided the difficulty in solving the wave equation of the scalar and Dirac field. A simple and direct way of studying entropy of the black hole is given.  相似文献   

17.
赵仁  张丽春  武月琴  李怀繁 《中国物理 B》2010,19(1):10402-010402
After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a five-dimensional Schwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the Bekenstein-Hawking entropy are derived. In a five-dimensional black hole the one order correction term in the Bekenstein-Hawking entropy correction term is proportional to the third power of the area, and the logarithmic correction term is a two-order small quantity. The correction term is related to the dimension constant introduced in the generalized uncertainty principle. Because the black hole entropy is not divergent, the lowest value of the five-dimensional Schwarzschild anti de Sitter black hole horizon radius is obtained. After considering the generalized uncertainty principle, the radiation spectrum is still consistent with normalization theory.  相似文献   

18.
By making use of the method of quantum statistics,we directly derive the partition function of bosonic and fermionic fields in Reissner-Nordstrom-De Sitter black Hole and obtain the integral expression of black hole‘s entropy and the entropy to which the cosmic horizon surface corresponds.It avoids the difficulty in solving the wave equation of various particles.Then via the improved brick-wall method,i.e.the membrane model,we calculate black hole‘s entropy and cosmic entropy and find out that if we let the integral upper limit and lower limit both tend to the horizon,the entropy of black hole is proportional to the area of horizon and the entropy to which cosmic horizon surface corresponds is proportional to the area of cosmic horizon.In our result,the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist.In the whole process,the physical idea is clear and the calculation is simple.We offer a new simple and direct way for calculating the entropy of different complicated black holes.  相似文献   

19.
Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensions, we calculate the statistical entropy of the scalar field in the higher-dimensional static spherically symmetric black hole spacetime without any artificial cutoff. Calculation shows that the entropy is proportional to the horizon area. The coefficient of proportionality is 1/4 when the minimal length parameter is selected appropriately.  相似文献   

20.
The partition functions of bosonic and fermionic fields in Horowitz-Strominger black hole are derived directly by quantum statistical method.Then via the improved brick-wall method (membrane model),the statistical entropy of black hole is obtained.If a proper parameter is chosen in our result,it is found out that the entropy is proportional to the area of horizon.The stripped term and the divergent logarithmic term in the original brick-wall method no longer exist.The difficulty in solving the wave equations of scalar and Dirac fields is avoided.A new neat way of calculating the entropy of various complicated black holes is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号