首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the thermodynamic properties of electron-doped perovskite manganite CaMnO3 by incorporating the effect of lattice distortions. In this paper the functional relation between the MnO6 distortions, charge and size mismatch and the thermal properties is determined. In the insulating state, distortions of the Mn-O environment are linear with calcium concentration. In the low-temperature spin-ordered ferromagnetic/anti-ferromagnetic state, at least 50% of the distortion is removed. The lattice contributions to the specific heat at constant volume (Cv(lattice)) of Ca1−xRExMnO3 (x=0.05, 0.1, 0.15, 0.20) with rare earth cation doping at the A-site has been studied as a function of temperature (10 K≤T≤500 K) by means of a Modified Rigid Ion Model (MRIM). In addition, the results on the bulk modulus (B), cohesive energy (φ), molecular force constant (f), Reststrahlen frequency (ν0) and Gruneisen parameter (γ) are also presented. Findings indicate an anomalous behavior of some highly Jahn-Teller (JT) distorted Ca1−xRExMnO3.  相似文献   

2.
The thermodynamic behavior of carbon doped MgB2 has been studied using a rigid ion model (RIM). The model potential consists of the long-range Coulomb, the short-range repulsive and the van der Waals interactions. This model has successfully explained the cohesive and thermodynamic properties of Mg(B1−xCx)2 (x=0.0, 0.02, 0.05, 0.075, 0.1, 0.2). The properties studied are the cohesive energy, molecular force constant, Restrahlen frequency, compressibility, Debye temperature and Gruneisen parameter. Our results on Restrahlen frequency and Debye temperature are in reasonably good agreement with the available experimental data. In addition, we have computed the specific heat Cp for Mg(B1−xCx)2 (x=0.2) as a function of temperature T in the range 16 K?T?1000 K. We have also shown the variation of specific heat Cp with doping concentration at room temperature (300 K). The calculated specific heat Cp for Mg(B1−xCx)2 (x=0.2) in the temperature range 16 K?T?22 K for which experimental results are available, agrees pretty well with the experimental data.  相似文献   

3.
A systematic investigation of the structural, magnetic and electrical properties of a series of nanocrystalline La0.7SrxCa0.3−xMnO3 materials, prepared by high energy ball milling method and then annealed at 900 °C has been undertaken. The analysis of the XRD data using the Win-metric software shows an increase in the unit cell volume with increasing Sr ion concentration. The La0.7SrxCa0.3−xMnO3 compounds undergo a structural orthorhombic-to-monoclinic transition at x=0.15. Electric and magnetic measurements show that both the Curie temperature and the insulator-to-metal transition temperature increase from 259 K and 253 K correspondingly for La0.7Ca0.3MnO3 (x=0) to 353 K and 282 K, respectively, for La0.7Sr0.3MnO3 (x=0.3). It is argued that the larger radius of Sr2+ ion than that of Ca2+ is the reason to strengthen the double-exchange interaction and to give rise to the observed increase of transition temperatures. Using the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the resistivity versus temperature data measured in the range of 50-320 K and found that the activation barrier decreased with the raising Sr2+ ion concentration.  相似文献   

4.
Thermal conductivity (λ) of nanocrystalline La0.67(CaxSr1−x)0.33MnO3 (x=0, 0.5, 1) and La0.6Y0.07Ca0.33MnO3 pellets prepared by a novel ‘pyrophoric’ method have been studied between the temperature range 10 and 300 K. Our data show that the magnitude of thermal conductivity is strongly influenced by the ion substitutions at La-site. The analysis of the thermal conductivity data indicates that the thermal transport is governed largely by phonons scattering in these systems and the electronic contribution is as small as 0.2-1% of total thermal conductivity (λtotal). At low temperatures (<90 K) 2D like lattice defects contribute to the phonon scattering dominantly and its strength increases with increasing Sr content and also with partial substitution of La by Y. Depending upon the composition of the samples, the magnon thermal conductivity contributes 2-15% of λtotal close to TC. In the paramagnetic regime the unusual increase in λtotal keeps signature of large dynamic lattice distortion.  相似文献   

5.
We have investigated the influence of temperature and composition on cohesive and thermal properties of the doped manganites: Eu1−xYxMnO3 (0.0≤x≤1.0) by using a modified rigid ion model (MRIM). Theoretically, MRIM provides arguably the most realistic interaction potential to treat these properties. We have also computed the specific heat variations with temperatures for these manganites. The computed results obtained from MRIM have presented proper interpretation of the experimental data on Eu1−xYxMnO3.  相似文献   

6.
The investigation of the manganites La2/3−xPrxSr1/3MnO3, La2/3Sr1/3−xCaxMnO3 and La2/3+xCa1/3−2xAgxMnO3, which all exhibit Mn3+:Mn4+=2, shows that it is possible to reach high magnetoresistance at room temperature, up to 21% under 1.2 T. These materials are compared to La5/6Ag1/6MnO3 which corresponds to the same Mn3+:Mn4+ ratio and exhibits a magnetoresistance of 25% in this field. An interesting feature deals with the value of the insulator-metal transition temperature TIM, often higher than TC, especially for Ag-based compounds. It is suggested that the latter results either from a better oxygenation of the surface of the grains or from a migration of silver toward the surface.  相似文献   

7.
Magnetic and specific heat measurements have been carried out on polycrystalline series of single-phase Dy1−xLaxNi2 (0?x?1) solid solutions. The compounds have a Laves-phase superstructure (space group F4¯3m) with the lattice parameter gradually increasing with decreasing Dy content. The samples with x?0.8 are ferromagnetic with the Curie temperature below 22 K. At high temperatures, all solid solutions are Curie-Weiss paramagnets. The Debye temperature, phonon and conduction electron contributions as well as a magnetic contribution to the heat capacity have been determined from specific heat measurements. The magnetocaloric effect was estimated from specific heat measurements performed in a magnetic field of 0.42 and 4.2 T.  相似文献   

8.
Effect of heavy cation doping (Ca2+ at the A-site) on the thermal properties of perovskite LaMnO3 has been investigated using the Rigid Ion Model (RIM)). As strong electron-phonon interactions are present in these compounds, the lattice part of the specific heat deserves proper attention. The specific heat of magnetoresistance compound La0.25Ca0.75MnO3 as a function of temperature (10 K ≤ T ≤ 300 K) is reported. Our results on specific heat are in good agreement with the measured values of specific heat at lower temperatures. In addition, the results on the cohesive energy (ϕ), molecular force constant (f), Restrahalen frequency (ν 0), Debye temperature (Θ D) and Gruneisen parameter (γ) are also discussed.   相似文献   

9.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

10.
Thermal conductivity (λ) of nanocrystalline La1−xAgxMnO3 (x=0.05, 0.15, 0.25, 0.3) pellets prepared by pyrophoric method is reported between 10 and 300 K. Magnitude of thermal conductivity has been found to be strongly influenced by monovalent (Ag) substitution at the La site. Silver doping in LaMnO3 enhances TC of the system to ∼299 K. Qualitative nature of the temperature variation of thermal conductivity of the silver substituted lanthanum manganites remains closely similar to that for divalent doped systems. Our analysis demonstrates that in La1−xAgxMnO3 also, the mechanism of heat conduction is predominantly by phonons. The contribution of the electronic part is only ∼1% of the total λ. The spin wave contribution is also estimated close to TC, which for all the samples lies within ∼2%. At temperatures below ∼100 K, the measured data have been analyzed using phonon relaxation time method and the strengths of the various phonon scattering processes have been estimated. Our analysis further suggests strong influence of phonon scattering by 2D like defects in the thermal conductivity of monovalent doped lanthanum manganites at low temperatures (<70 K) in the ferromagnetic region.  相似文献   

11.
The electrical and magnetic transport properties of the La0.67−xEuxCa0.33MnO3 system exhibit lowering of insulator to metal and paramagnetic to ferromagnetic transition temperature (TC) with the increase of Eu concentration in addition to possessing CMR property. The temperature variation of electrical resistivity and magnetic susceptibility for x=0.21 is found to have two distinct regions in the paramagnetic state for T>TP; one with the localization of lattice polaron in the high-temperature region (T>1.5TP) satisfying the dynamics of variable range hopping (VRH) model and the other being the combination of the spin and lattice polarons in the region TP<T<1.5TP. The resistivity variation with temperature and magnetic field, the cusp in the resistivity peak and CMR phenomenon are interpreted in terms of coexistence of spin and lattice small polarons in the intermediate region (TP<T<1.5TP). The spin polaron energy in the La0.46Eu0.21Ca0.33MnO3 system is estimated to be 106.73±0.90 meV and this energy decreases with the increase of external magnetic field. The MR ratio is maximal with a value of 99.99% around the transition temperature and this maximum persists till T→0 K, at the field of 8 T.  相似文献   

12.
The (1−x)La0.67Ca0.33MnO3+xCuO composites have been synthesized by a new liquid phase method. The XRD and SEM measurements reveal that little CuO is soluble in the structure of La0.67Ca0.33MnO3 and is mainly distributed at the grain boundary of La0.67Ca0.33MnO3. As CuO content x increases, the magnetization M values increase until x=0.05 and M values decrease when x further increases at low temperature. For x=0.10, 0.20 and 0.30 composites, double metal-insulator transitions accompanying a single ferromagnetic transition are observed. Large low-field magnetoresistance is achieved for the composites and the largest magnetoresistance appeared when x=0.20.  相似文献   

13.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

14.
The structure, transport properties and the magnetoresistance behavior in the temperature interval 77–400 K of the perovskite-like lanthanum manganites La0.6Pb0.4−xMgx+yMnO3 (x=0, 0.1, 0.2 and y=0, 0.2) were investigated. Polycrystalline bulk samples were prepared by sol–gel self-combustion and subsequent heat treatment at 1000 °C for different times, 40, 80, 160 and 320 min. All manganites exhibit a peak in the resistivity around 200–250 K, below the ferromagnetic ordering temperature (320–330 K). An isotropic and negative magnetoresistance has been observed in all compounds. Magnetoresistance MR exhibits a peak in the temperature range 130–150 K, below SC–metal transition temperature. Magnitude of MR at the peaks was nearly 27% in the magnetic field of 2 T. At room temperature, a magnetoresistance of 9.5% for La0.6Pb0.2Mg0.2MnO3 composition was obtained. Longer heat treatment time enhanced the magnetorezistive properties.  相似文献   

15.
The effects of partial substitution of Mn for Co on the thermoelectric properties of Ca3MnxCo4−xO9 (x=0, 0.03, 0.9), prepared by sol-gel process, were investigated at the temperatures from 380 K down to 5 K. The results indicate that the substitution of Mn for Co results in increase in thermopower at temperatures >∼80 K, and substantial (23-31% at 300 K) decrease in lattice thermal conductivity in the whole temperature range investigated. The temperature behavior of ZT suggests that Ca3MnxCo4−xO9 with light Mn substitution would be a promising candidate for high-temperature thermoelectric applications.  相似文献   

16.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.  相似文献   

17.
We report on the specific heat C(T) of doped manganites Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3, Sm0.5Ca0.5MnO3, Dy0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 in the temperature range 2?T?300 K using modified rigid ion model (MRIM). The present specific heat results are in general satisfactory agreement with experimental data except at very low temperatures (i.e. T?12 K). Also a sharp peak observed in the experimental results for these compounds around 5 K could not be revealed by our computed results as they arise due to Schottky-like anomaly. Besides, we have reported the cohesive and the thermal properties of these compounds. The results obtained by us are discussed in detail.  相似文献   

18.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

19.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

20.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号