首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to establish the role of niobium on the hydrogenation, disproportionation, desorption and recombination (HDDR) behavior of near-stoichiometric alloys, two alloys: NdI3Fe8OB7 and Nd13Fe78Nb1Co1B7 (at%) were investigated before, during and after the HDDR process. The microstructure of the as-cast Nb-free alloy before employing the HDDR process was found to consist of three phases, the matrix Nd2Fe14B (φ) phase, Nd-rich phase and a significant amount of free iron; whereas, the microstructure of the Nb-containing alloy consisted of only the first two phases.  相似文献   

2.
Effects of the conventional hydrogenation disproportionation desorption recombination (HDDR) process and the additions of Co and Zr on anisotropy of HDDR PrFeB-type magnetic materials are investigated. The results show that the degree of anisotropy in conventional HDDR Pr13Fe80B7 materials decreases monotonically with the prolonged disproportionation time, and short disproportionation time is helpful for preparing highly anisotropic Pr13Fe80B7 material. However, it is notable that the degree of anisotropy in conventional HDDR Pr13Fe80B7 materials is significantly smaller than that in solid-HDDR Pr13Fe80B7 materials with the same disproportionation time. At the same time, it is found that the addition of Co and Zr may make HDDR Pr-Fe-B materials that have higher anisotropy compared with HDDR pure ternary Pr13Fe80B7 materials under the same HDDR process, but their degree of anisotropy will also decrease monotonically with the prolonged disproportionation time, and will be close to zero when the disproportionation time is greater than 20 h. Based on this, the origin of anisotropy is discussed by X-ray diffraction (XRD) investigations for the disproportionated products of the above alloys. The results show that the origin of anisotropy in HDDR Pr-Fe-B materials with the addition of Co or Zr may differ from that in HDDR pure Pr13Fe80B7 materials, and the former maybe from the residual “Pr2(Fe,Co,Zr)14B” nucleus while the latter is not. Finally, it is also found that HDDR Pr-Fe-B materials with Co or Zr can obtain high-magnetic properties even if the high-desorption temperature is used, and this shows the addition of Co and Zr may make HDDR Pr-Fe-B materials that have a larger process temperature range.  相似文献   

3.
For the HDDR Nd13.5Fe79.5B7 magnetic powders, effects of disproportionation time and hydrogen pressure on the anisotropy were studied during the slow desorption stage. Studies showed that shorter disproportionation times caused the magnetic powders displaying higher anisotropy. With increasing disproportionation times, the degree of crystallographic alignment decreased. This in turn caused a drop in remanence and anisotropic character. Longer disporportionation times have also been correlated to a change in disproportionated microstructure from lamella to columnar. XRD (X-Ray Diffraction) studies showed that except NdH2,α-Fe and Fe2B, no other phases were included in the disproportionation mixture. This elucidated that the strong anisotropy is only related to a lamella disproportionation microstructure, which corresponds to a short disproportionation times. The lamella disproportionation microstructure may remain or inherit the alignment of original Nd2Fe14B grain, and may also be related to the alignment of the newly formed Nd2Fe14B grain. Thus, the anisotropic formation mechanism of ternary magnetic powders accords with “anisotropy-mediating phase” model. If the disproportionation mixture were carried out an optimum hydrogen pressure treatment during the HDDR process, the degree of crystallographic alignment can be further enhanced.  相似文献   

4.
Microstructural evolutions of Pr13Fe80B7 alloys during solid hydrogenation disproportionation desorption recombination (HDDR) process is systematically investigated. The results show that the early-disproportionated products of Pr13Fe80B7 alloys are mainly characteristic of rod-like morphology, and the rods are PrH2 while the matrix is Fe. Moreover, all the PrH2 rods have the same crystallographic orientation, and grow with a definite orientation related to the Fe matrix. However, it is notable that no iron boride phase except for NdH2 and Fe is found. With the prolonged disproportionation time, the rod-like disproportionated products coarsen, and the Fe2B come to form. When the disproportionation time is 17 h, the rod-like disproportionation morphology transforms into sphere, and a large amount of Fe2B is found. Subsequent investigations for the recombination show that the recombination reactions start at the boundaries between PrH2 rods and Fe matrix, and the rim-like Pr2Fe14B is formed on the PrH2 rods. Moreover, the recombined PrFeB powder of the rod-like microstructure has strong magnetic anisotropy.  相似文献   

5.
A modified hydrogenation–disproportionation desorption-recombination (HDDR) process consisting of (i) solid disproportionation and (ii) slow recombination under partial hydrogen pressure has been applied to a Nd16.2Fe78.2B5.6 alloy. Scanning electron microscopy shows that an initially fine rod-like structure of NdHx and Fe observed after 15 min of hydrogenation at 900°C is transformed into a granular morphology with prolonged annealing. Simultaneously, finely dispersed tetragonal Fe3B particles of 10–50 nm diameter exist. XRD studies show that this metastable Fe3B phase is transformed to Fe2B and Fe on further annealing. Short solid-disproportionation times result in a higher degree of anisotropy after recombination, whereas long annealing times and conventional processing lead to isotropic material. It is concluded that the formation of the intermediate tetragonal Fe3B phase after solid disproportionation is pivotal for the inducement of texture in HDDR processed ternary NdFeB-type alloys.  相似文献   

6.
A study of the processing of highly anisotropic HDDR powder and PTFE-bonded magnets with the composition Pr13.7Fe63.5Co16.7B6M0.1 (M=Zr or Nb) has been undertaken. These alloys were processed by an homogenising heat treatment for a range of times, and a subsequent HDDR treatment employing a range of disproportionation times. The optimum time for the homogenisation of the as-cast structure was found to be 20 h at 1100°C, while the optimum disproportionation time in the HDDR treatment was found to be 10 min at 860°C. Zr-additions appear to inhibit grain growth during the heat treatment process, whereas Nb-additions appeared to control more effectively the grain growth during the disproportionation and recombination stages of the HDDR process.  相似文献   

7.
It is difficult to obtain the crystallographic alignment for stoichiometric Nd2Fe14B alloys by applying the melt-spun and subsequent hot-pressing and hot-deformation techniques. However, the enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets have been obtained by Nb addition in the present paper. The magnetic properties studies show that Nb addition leads to the remarkable increase of remanence Br and intrinsic coercivity Hci, which is due to the improvement of c-axis texture and refinement of microstructure. Microstructure studies using transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that Nb atoms are enriched at grain boundary and the NbFeB phase is observed with increasing Nb content. Since some Fe atoms in the Nd2Fe14B phase participate in the formation of NbFeB phase, the excessive Nd atoms may be enriched at grain boundary, which may improve the physical property of grain boundary and provide a mass transport pass for preferential growth of oriented Nd2Fe14B grains, thus leading to the enhanced alignment and magnetic properties.  相似文献   

8.
The crystal and magnetic structures of the composite compound Nd2Co6Fe have been investigated by high-resolution neutron powder diffraction and X-ray powder diffraction. The compound crystallizes in the hexagonal Ce2Ni7-type structure consisting of Nd(Co,Fe)2 and Nd(Co,Fe)5 structural blocks alternately stacked along the c-axis. Multi-pattern Rietveld refinement of neutron diffraction and X-ray diffraction data at room temperature reveal that substitution of Fe for Co occurs exclusively in the Nd(Co,Fe)5 structural blocks. The preferential occupation of the Fe atoms in the structure is discussed based on the mixing enthalpy between Nd and Fe atoms and on the lattice distortions. In agreement with the reported magnetic phase diagram of the Nd2Co7−xFex compounds, magnetic structure models with the moments of all atoms in the ab plane at 300 K and along the c-axis at 450 K provide a satisfactory fitting to the experimental neutron diffraction data. The refinement results show that the atomic moments of (Co,Fe) atoms within the Nd(Co,Fe)5 blocks decrease slightly with temperature, whereas the atomic moments of Nd in the compound and of (Co,Fe) atoms at the interface between the Nd(Co,Fe)2 and Nd(Co,Fe)5 blocks are reduced significantly.  相似文献   

9.
The structural and magnetic properties of Nd12Fe82B6 and Nd10M2Fe82B6 (M = Nb, Ti, Zr, Cr) alloys prepared using arc melting and melt spinning have been investigated. All the samples are found to crystallise with a tetragonal Nd2Fe14B phase without any alloy or elemental impurities. There is a small decrease in the unit cell volume of Nd2Fe14B due to transition metal (M) addition. The substitution of Nb and Ti refines and homogenises the nanostructure of the alloys, promoting intergrain exchange coupling leading to an increase in the remanence and energy product. For example, the remanence and energy product of Nd12Fe82B6 and Nd10Nb2Fe82B6 are 8.4 kG and 15 MGOe, and 9.9 kG and 20 MGOe, respectively. The J(T) curves are similar to those of a single phase ferromagnetic material suggesting no segregation of ferromagnetic impurities. The observed structural and magnetic properties are consistent with the fact that the substitutional transition metal atoms occupy the Nd site of the tetragonal Nd2Fe14B crystal lattice. The improvement of magnetic properties of nanocrystalline Nd2Fe14B alloys with the decrease in Nd concentration may be beneficial for the application of this material in bonded magnets.  相似文献   

10.
The Fe–Si nanosized particles were obtained by controlled partial crystallization of Fe73.5Si13.5B9Cu1Nb1X2 (X = Nb, Zr, Mo) amorphous alloys. In situ Mössbauer spectroscopy and magnetization measurements have been used to follow the temperature-dependent magnetization of the amorphous as well as of the nanosized Fe–Si particles. Our results, for the residual amorphous and of nanoparticles phases, show that the temperature dependence of the hyperfine field and magnetization of both residual amorphous and nanocrystalline Fe(Si) phases are different from that of the as-quenched bulk amorphous or crystalline Fe3Si alloys. Likewise, from the temperature dependence studies it was possible to determine that the onset temperature of the nanocrystallization process increases in the sequence Mo < Nb < Zr, for the same annealing conditions.  相似文献   

11.
《Current Applied Physics》2015,15(4):461-467
We have successfully developed a Dy-free grain boundary diffusion process with neodymium hydride (NdHx) alloy to the permanent magnet Nd2Fe14B powders using hydrogenation – disproportionation – desorption – recombination (HDDR) method. All the diffusion treatments were performed at 700–800 °C for various annealing time under the high vacuum with rotating diffusion method that effectively control the abnormal grain growth. The coercivities of Dy-treated Nd2Fe14B powders were varied from 9.5 kOe to 13.2 kOe but the remanence was decreased to 8.1 kG (10% reduction) depending on dysprosium hydride (DyHx) content and diffusion treated time. However, the coercivity and remanence of Dy-free diffusion treated powder have been increased to 12.2 kOe (28.5% enhancement) and 11.1 kG (22% enhancement) at the optimal diffusion treatment (800 °C for 3 h), respectively. This unique simultaneous enhancement is to isolate the magnetic coupling between Nd2Fe14B grains by creating non-magnetic Nd grain boundaries and enhance the alignment of the Nd2Fe14B hard magnetic phase, fabricated by optimal diffusion conditions.  相似文献   

12.
The effect of wheel speed on the phase compositions and microstructures of melt-spun Nd1.2Fe10.5Mo1.5 ribbon was investigated. It is found that the Nd(Fe,Mo)12 phase can be obtained at the wheel speed of 10 m/s, and TbCu7-type Nd(Fe,Mo)7 phase is formed with the wheel speed higher than 10 m/s. The amorphous phase is achieved at 65 m/s. The average grain size of phases decreases linearly with increasing wheel speed. The Nd(Fe,Mo)12N1.0 nitride obtained from annealed ribbons quenched at 65 m/s shows a coercivity much higher than that from the ribbons quenched at 10 m/s, which is due to the smaller grain size in the former ribbons.  相似文献   

13.
Powdered Nd-Fe-B-type permanent magnets were heated at 200 C for times up to 32 days. The evolution of the Nd2Fe14B magnetic phase, followed by57Fe Mössbauer spectroscopy, evidenced the positive influence of both the hydrogen decrepitation process and Co, Nb and V additives on the corrosion resistance.  相似文献   

14.
Coercivity enhancement of Dy-free Nd–Fe–Co–B–Ga–Zr powders was studied using the conventional hydrogenation–decomposition–desorption–recombination (HDDR) process. It was found that the addition of Al together with the proper Nd content and the slow hydrogen desorption of the HDDR treatment can induce high coercivity in the powder. For example, the 14.0 at% Nd–2.0 at% Al powder exhibits HcJ of 1560 kA/m, Br of 1.22 T, and (BH)max of 257 kJ/m3. The high coercivity inducement of the powder is thought to be attributed to the formation of Nd-rich phase, which continuously surrounds fine Nd2Fe14B grains.  相似文献   

15.
利用x射线衍射和磁测量研究了不同稳定元素Co以及Ti,V和Cr替代对Nd3Fe29-x-yCoxMy(M=Ti,V,Cr)化合物结构和磁性的影响.研究发现:每一个稳定元素都有一替代量极限,在此极限以内所有化合物均为Nd3(Fe,Ti)29型结构,A2/m空间群.不同稳定元素的溶解极限不同.Co的替代量与稳定元素有关,当以Cr作为稳定元素时,Cr的替代量随着Co含量的提高而提高 关键词: 3(Fe')" href="#">Nd3(Fe Co 29')" href="#">M)29 结构 磁性  相似文献   

16.
吴文霞  郭永权  李安华  李卫 《物理学报》2008,57(4):2486-2492
应用固体与分子经验电子理论计算了Nd2Fe14B的价电子结构、磁矩和居里温度,计算结果与实验值相符.计算表明:该合金的磁性与3d磁电子数成正比.从Fe(c)晶位到Fe(k2)晶位磁矩增加,其机理源于价电子、哑对电子和3d磁电子之间的转化,有78%的哑对电子和18%的3d共价电子转化成了磁电子.居里温度和磁矩与Fe原子配位数成正比,与加权等同键数Iσ成反比,Nd原子 关键词: 2Fe14B')" href="#">Nd2Fe14B 价电子结构 居里温度  相似文献   

17.
The stability of the excellent permanent magnetic compound Nd2Fe14B and substitution of Fe in the compound by V, Cr, Mn, Zr and Nb are investigated by using interatomic pair potentials which are converted from lattice-inversion method. Calculation shows that the substitution always makes the cell volume larger, and the increase of the volume is almost linear with substituent concentration. The calculated cohesive energy shows that the preferential order of substitution of Fe is Nb, V, Cr, Mn, Zr. Nevertheless, all the five substituting elements should most preferentially replace Fe in the j2 site, which has the greatest space among all six Fe sites.  相似文献   

18.
Nanocrystalline Nd12Fe82B6 (atomic ratio) alloy powders with Nd2Fe14B/α-Fe two-phase structure were prepared by HDDR combined with mechanical milling. The as-cast Nd12Fe82B6 alloy was disproportionated via ball milling in hydrogen, and desorption–recombination was then performed. The phase and structural change due to both the milling in hydrogen and the subsequent desorption–recombination treatment was characterized by X-ray diffraction (XRD). The desorption–recombination behavior of the as-disproportionated alloy was investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The morphology and microstructure of the final alloy powders subject to desorption–recombination treatment were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results showed that, by milling in hydrogen for 20 h, the matrix Nd2Fe14B phase of the alloy was fully disproportionated into a nano-structured mixture of Nd2H5, Fe2B, and α-Fe phases with average size of about 8 nm, and that a subsequent desorption–recombination treatment at 760 °C for 30 min led to the formation of Nd2Fe14B/α-Fe two-phase nanocomposite powders with average crystallite size of 30 nm. The remanence Br, coercivity Hc, and maximum energy product (BH)max of such nanocrystalline Nd12Fe82B6 alloy powders achieved 0.73 T, 610 kA/m, and 110.8 kJ/m3, respectively.  相似文献   

19.
Sintered Nd17 (Fe1?x Cox)75B8 permanent magnetic alloys have been studied by Mössbauer effect, X-ray diffraction and electron probe micro-analysis, The results show that the alloys are composed of the tetragonal phase Nd2(Fe,Co)14B, the B-rich phase Nd111(Fe,Co)4B4 and the Nd-rich phase Nd80(Fe,Co)19B. In the tetragonal phase, Co atoms occupy preferentially the k2 and j2 sites, and Fe atoms occupy randomly the k1 site and preferentially the j1 site while the e and c sites seem to be completely occupied by Fe atoms.  相似文献   

20.
Nd8Fe86???x Nb x B6 (x = 0, 1, 2, 3) nanocomposite magnet has been studied by Mössbauer spectroscopy and nanostructure observation. It was found that intergranular phase formed between α-Fe and Nd2Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the grain refinement of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd8Fe86B6 to 25 nm in Nd8Fe85Nb1B6 alloys. The role of Nb addition was confirmed to stabilize the Nd2Fe14B lattice preventing from thermal vibration of the corresponding sites at where Fe atoms are substituted by Nb in the Nd2Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd2Fe14B crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号