首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic susceptibility of Al2REM (REM = Gd, Dy, and Ho) intermetallic compounds is experimentally investigated by the Faraday method in a wide temperature interval (290–2000 K) in different magnetic fields (0.3–1.3 T). In the crystalline state, the temperature dependences of the susceptibility follow the generalized Curie–Weiss law. In the liquid phase, the magnetic susceptibility of these intermetallic compounds above the melting point increases for all examined samples. The parameters of the electronic structure of the compounds are calculated based on the experimental data. It is established that the effective magnetic moment per rareearth metal atom is smaller than that characteristic of the free REM+ ion.  相似文献   

2.
We report on FMR experiments performed for the first time on thin Ni-Mn-Ga films clamped to the mica substrates and then fully released from them. The aim is to evaluate the role of magnetoelastic coupling in stressed Ni-Mn-Ga Heusler alloy films that undergo martensitic transformation. The experimental results show that the difference in the effective magnetization 4π(Meff tubes-Meff films) is negligible in the austenite phase and it increases to about 1–1.5 kG at temperatures well below the martensitic transformation. The data suggests that magnetoelastic coupling in the martensite phase of Ni-Mn-Ga thin films is typical of normal thin magnetic films with magnetostriction of about 50 ppm.  相似文献   

3.
This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.  相似文献   

4.
Martensitic transformations have been analysed in a series of antimony implanted austenitic stainless steels using CEMS. The implanted samples contain about 70 vols martensite, which is considerably more than can be formed conventionally by plastic deformation or cooling below the martensite start temperature. CEM spectra from implantation induced martensite and from martensite formed in conventional processes are virtually identical. In both cases the hyperfine field is ≈ 25T.  相似文献   

5.
Summary In this work we report on the anisotropic physical properties of silver-sheathed Bi-2223 tapes fabricated by means of hot extrusion and repeated pressing and sintering processes. The obtained Bi-2223/Ag short tapes, having critical current densitiesJ c of 20–30 kA/cm2 at 77 K, 0 T, were measured in external magnetic fields up to 0.5T applied in two different orientations (i.e. μ0H‖(a,b)-planes and μ0H ⊥(a,b)-planes). The magnetic characterizations were performed in a wide range of temperatures and magnetic fields to study the first magnetization curve of tapes evaluating the lower critical fields μ0Hc1⊥ab and ⊥0Hc1#x2016;ab and their dependences on temperature. TheJ c values at different fields in the temperature range 4.6–90 K, calculated from the magnetization data by the critical state model, are also presented. Paper presented at the ?VII Congresso SATT?, Torino, 4–7 October 1994.  相似文献   

6.
A differential AC-chip calorimeter capable to measure the glass transition in nanometer thin films is described. Due to the differential setup pJ/K sensitivity is achieved. Heat capacity can be measured for sample masses below one nanogram even above room temperature as needed for the study of the glass transition in nanometer thin polymeric films. The calorimeter allows for the frequency dependent measurement of complex heat capacity in the frequency range from 1 Hz to 1 kHz. The glass transition in thin films of polystyrene (PS) (100–4 nm) and polymethylmethacrylate (PMMA) (400–10 nm) was determined at well defined experimental time scales. No thickness dependency of the glass transition temperature was observed within the error limits (±3 K) - neither at constant frequency nor for the traces in the activation diagrams (1 Hz–1 kHz).  相似文献   

7.
This work concerns an in situ study of the isothermal formation of martensite in a stainless steel under the influence of magnetic fields up to 9 T at three different temperatures (213, 233 and 253 K). It is shown that the presence of a constant applied magnetic field promotes the formation of martensite significantly. The activation energy for the nucleation of martensite has been derived using a semi-empirical kinetic model. The experimental results have been analyzed using the Ghosh and Olson model. While this model describes the time and field dependences of the experimental data well, the thermal frictional energy and the defect size values are much lower than those expected from earlier work.  相似文献   

8.
Free- and constrained recovery behaviors of a Fe-23.3 Mn-2.8 Si (wt.%) Shape Memory Alloy (SMA) were revealed by uncoiling experiments and tensile tests, respectively. With the enhancement of plastic deformation degree, including by additionally elongating the hot rolled specimens, the increase of the amount of ε stress induced martensite (SIM) plates in the detriment if γ austenite, was emphasized by means of optical microscopy and XRD. The tensile-stress variation was analyzed during complex cycling by constrained recovery of the alloy under study, with a tensile strength of 670 MPa and an ultimate strain of 8%. The cycles were composed of: (i) room temperature (RT) loading; (ii) RT partial unloading; (iii) constant strain heating and (iv) constant strain cooling to RT. During the cycles, characterized by average maximum stresses above 500 MPa and recovery stresses above 260 MPa, the observed stress-temperature evolution confirmed the four stage stress variation reported in literature [Z.Z. Dong et al., Acta Mater. 53, 4009 (2005)]. In order to maintain the above stress levels, constrained-recovery strain had to be increased with an average of 1.1% per cycle, between 1 and 3%.  相似文献   

9.
Ferromagnetic Fe-Pd shape memory alloys (SMA) undergo a martensitic phase transformation during cooling from a parent FCC phase to a tetragonal FCT martensite. This transformation is thermoelastic and reversible giving rise to the shape memory effect. On further cooling an irreversible FCT to BCT transformation occurs that makes impossible the memory effect. Nevertheless, the transformation from reversible to irreversible phase has been not complete since a volume fraction of reversible phase in the alloy is retained even after cooling below the temperature of appearance of the irreversible phase. The addition of Co lowers the temperature of the reversible and irreversible phase transformations but also reduces the amount of transformed irreversible martensite after cooling to 10 K.  相似文献   

10.
Martensitic transformations are extensively influenced by external fields, such as temperature and uniaxial stress, in transformation temperatures, crystallography and amount and morphology of the product martensites. Therefore, to clarify the effect of external fields on martensitic transformations it is very important to understand the essential problems of the transformation, such as thermodynamics, kinetics and the origin of the transformation, whose information is naturally useful in technological applications using the transformation. Magnetic field and hydrostatic pressure are important in such external fields because there exist some significant differences in magnetic moment and atomic volume between the parent and martensitic states. In the present paper, therefore, we summarizz the effects of magnetic field and hydrostatic pressure on martensitic transfonnations in some ferrous and non-ferrous alloys by referring to past and recent works made by our group and many other researchers. The transformation start temperatures of all the ferrous alloys examined increase with increasing magnetic field, but those of non-ferrous alloys, such as Ti-Ni and Cu-Al-Ni shape memory alloys, are not affected. On the other hand, the transformation start temperature decreases with increasing hydrostatic pressure in some ferrous alloys, but increases in Cu-Al-Ni alloys. The magnetic field and hydrostatic pressure dependencies of the martensitic start temperature are in good agreement with those calculated by our proposed equations.

During investigations of ferrous Fe-Ni-Co-Ti shape memory alloy, we found that a magnetoelastic martensitic transformation appears and, in addition, several martensite plates grow nearly parallel to the direction of the applied magnetic field in a specimen of Fe-Ni alloy single crystal.

We further found that the isothermal process in Fe-Ni-Mn alloy changes to athermal under a magnetic field and the athermal process changes to isothermal under hydrostatic pressure. Based on these facts, a phenomenological theory has been constructed, which unifies the two transformation processes.  相似文献   

11.
Off-stoichiometric Ni-Mn-Ga alloys, with various chemical compositions, were produced by melt-spinning technique. Transformation behavior was studied by means of differential scanning calorimetery (DSC). Ribbons and bulks reveal reversible martensitic transformation which occurs, dependently on chemical composition, in the range of temperatures: between 100°C and -150°C. Transmission electron microscope and X-ray diffractometer were used for structure examination. Dependently on chemical composition five-layered (10 M) or seven-layered (14 M) martensite was observed, whereas the parent phase shows the B2 structure. Due to high cooling rate realized in melt-spinning technique some amount of amorphous phase was found. For all ribbons magnetization was measured versus change of temperature as well as magnetic field. Due to relatively high density of dislocations lower value of magnetization were obtained.  相似文献   

12.
The phase transformations associated with Shape Memory Effect (SME) can be one step, B19' (martensite) ↔ B2 (austenite), or two/multiple steps which include the intermediate R phase, depending on the thermal and thermomechanical history of the alloy. The transformation temperatures are generally observed above room temperature in Ti-rich Ni-Ti alloys, while those observed in Ni-rich alloys occur below room temperature. The goal of the present work is to investigate the phase transformations evolution in Ti-Rich Ni-Ti SMA (Ni-51 at % Ti) when subjected to two distinct thermal treatments (500°C for 30 minutes in air and 800°C for 300 minutes in vacuum) and subsequently multiple steps of marforming thermomechanical treatments intercalated with thermal treatments (500°C for 30 minutes in air) and subsequent four distinct final thermal treatments (400, 450, 500 or 600°C for 30 minutes in air). Further, the stability of phase transformations in the initial ten thermal cycles of these thermomechanically treated samples is also studied. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) were used to identify the transformation temperatures and the phases that are present after the thermomechanical treatments.  相似文献   

13.
The technologies of electron beam lithography, dry etching and systems integration are investigated to fabricate a series of Ni-Mn-Ga double-beam structures designed with decreasing critical dimensions of 10 μm, 1 μm and 400 nm. Ni-Mn-Ga thin films of 1 μm thickness are deposited by magnetron sputtering and heat-treated in free-standing condition after selective removal of the substrate. Differential scanning calorimetry and electrical resistance measurements on the films show the characteristic features of martensitic transformation above room temperature. First optical beam deflection experiments demonstrate the magnetic and thermal actuation performance of the double-beam structures.  相似文献   

14.
Low field inverse magnetocaloric effect (IMCE) associated with first-order martensitic transition in Ni50−x Mn37+x In13 (x=3,4,5) alloys was investigated. By tuning the composition of Ni/Mn, large change in the magnetization occurring between martensite and austenite phases in a narrow temperature interval was achieved, which results in large IMCE. Under low magnetic field change of 2 T, a large positive magnetic entropy change (ΔS M ) of 23.5 J/kg K with a net refrigeration capacity of 53 J/kg was obtained near room temperature (308 K) in the x=3 alloy. The results show that a small variation in Ni/Mn ratio significantly influences the martensitic transition temperature and the associated magnetic and magnetocaloric properties.  相似文献   

15.
This paper reports on the frequency dependence of the magnetic and electric power dissipation in a magnetic fluid sample, in the microwave frequency range (0.5 to 8GHz), at various values of the static magnetic field (0 to 167.8kA/m). The computation of the power dissipation relies on the experimental values measured for the complex dielectric permittivity, ɛ = ɛ′ - iɛ″, and the complex magnetic permeability, μ = μ′ - iμ″, over the same frequency range. The results show that the magnetic power dissipation is much larger than the electric one for the investigated sample. At a specific frequency, f (Hz) , the power dissipation, p, depends on the external magnetic field, and exhibits a maximum. The result obtained suggests the possibility of controlling the energy absorption in the microwave range by means of the application of an external magnetic field.  相似文献   

16.
We studied ~0.5 μm and 30–80 ? thick films of a normal dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), at temperature range 228–286 K, deposited onto silicon (111) substrate with native oxide using X-ray reflectivity. TEHOS is spherical with size ~10 ?, non-polar, non-reactive, and non-entangling; TEHOS has been reported to show interfacial layering at room temperature and surface layering at 0.23 Tc (Tc≈ 950 K). For films m thick, the reflectivity data did not change significantly as a function of temperature; for films 30–80 ? thick, the reflectivity data did change. The data could be fitted with an electron density model composed of a minimum necessary number of Gaussians and a uniform density layer with error-function broadened interfaces. When the film thickness is 60–80 ? below 246 K, we found that the interface and the surface layering coexist but do not overlap. When the film thickness is 30–40 ? below 277 K, they overlap and the electron density profile shows slowly decreasing molecular oscillations at the air-liquid interface.  相似文献   

17.
X-ray magnetic circular dichroism (X-MCD) was used as a large, element-specific and quantitative magnetic contrast mechanism in the soft X-ray microscopes at BESSY I (Berlin) and the ALS (Berkeley). The present state and potential of magnetic transmission X-ray microscopy (MTXM) is outlined. The possibility to record images in varying magnetic fields and the high spatial resolution down to 25 nm were used to image out-of-plane magnetized (4 ?Fe / 4 ?Gd)×75 systems. Magnetic domains could be studied in arrays of circular and square dots with lateral dimensions down to 180 nm. Hysteresis loops of individual dots were deduced using the direct proportionality of the X-MCD contrast to the sample magnetization. Images of a 3 nmCr / 50 nmFe / 6 nmCr film demonstrate for the first time that MTXM is also able to observe in-plane magnetized domains. In the future the possible applications of MTXM will be extended with regard to the strength of the external field, the available energy range and the sample conditions by building a dedicated transmission X-ray microscope for magnetic imaging at BESSY II. Received: 22 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

18.
Deformation of polycrystalline Ni-Mn-Ga alloys was studied for both the L21 parent phase and 10 M martensitic state. The effect of deformation by compression up to the fracture on mechanical behavior and structure change was studied for the inhomogeneous as-cast state and after annealing at 900C for 50 hours. The structure, after deformation of the parent phase, observed by TEM reveals the presence of 10 M and 14 M martensite in the matrix, whereas the deformation of 10 M martensite does not show the change of the structure type. The stress-strain curves were analyzed and compared with the earlier published results.  相似文献   

19.
An (0.2 nm 57Fe / 2.6 nm Ag)75 granular multilayer sample and heterostructures with additional continuous Fe layers in different sequences were studied in magnetic field applied at different temperatures. The broadening of the superparamagnetic lines was found to be very similar for the three samples in applied fields both parallel and perpendicular to the sample plane. While the layer sequence has no significant effect on the superparamagnetic properties, the continuous magnetic layers follow a different approach to saturation in perpendicular magnetic fields.  相似文献   

20.
Magneto-mechanical experiments with a rotating magnetic field of 0.97 T were performed with a Ni-Mn-Ga single crystal. Periodic strains exceeding 1% were recorded over a hundred million magneto-mechanical cycles. The twin microstructure of the cycled crystal was characterized using atomic force microscopy (AFM) and magnetic force microscopy (MFM). In the center of the sample, no twin boundaries were found. At the sample edges, the microstructure shows a dense twin pattern. The results are compared with previous experiments of differently trained crystals. It is useful to distinguish between “ineffective training”, which results in a nearly self-accommodated martensite, and “effective training”, which results in a nearly single-variant crystal. The evolution of twin structure is discussed in terms of training, magneto-mechanical cycling, and extrinsic constraints imposed by the experimental setting. It is concluded that the response of a magnetic shape memory alloy to an alternating excitation depends strongly on the initial twin microstructure established through training. In particular, ineffective training results in a twin microstructure which can adapt to extrinsic constraints resulting in continued large periodic magnetic-field-induced deformation. In contrast, the twin microstructure of an effectively trained crystal can not adapt to extrinsic constraints resulting in early failure by fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号