首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

2.
In this paper, we extend the hyperbolic function approach for constructing the exact solutions of nonlinear differential-difference equation (NDDE) in a unified way. Applying the extended approach and with the aid of Maple,we have studied the discrete complex Ginzburg-Landau equation (dCGLE). As a result, we find a set of exact solutions which include bright and dark soliton solutions.  相似文献   

3.
We investigate the exact nonstationary solutions of a two-component Bose Einstein condensate which compose of two species having different atomic masses. We also consider the interesting behavior of the atomic velocity and the flow density. It is shown that the motion of the two components can be controlled by the experimental parameters.  相似文献   

4.
The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties,but the black hole solutions in this theory are still not fully understood.In the paper,we concentrate on studying the charged black holes in such a theory.Adding the electromagnetic field part to the effective action,we show how the black hole solutions around the Reissner-Nordstrom metric can be solved perturbatively and iteratively.We further calculate the corresponding temperature,entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.  相似文献   

5.
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.  相似文献   

6.
In order to extract the information of the momentum-dependent interaction of kaons under the extreme condition, the properties of the positively charged kaons produced in a heavy ion collision are studied via a simple model which has an invariable nucleon's velocity. Our special attention is focused on the observation of the dependence of the kaon's properties on the motion of nucleons in a hot and dense nuclear environment. Starting from two kinds of kaon quasiparticle models defined in transport theories for simulating heavy ion collisions, we calculate the effective mass and potential of the K+'s produced in the collisions and find that these properties not only depend closely on the velocity of nucleons but the dependence varies with kaon's quasiparticle model. It is clearly shown that the motion of nucleons reduces the momentum of K+'s at a given rapidity and thus weakens the rapidity distribution of K+'s directed flow in realistic nuclear collisions.  相似文献   

7.
New exact solutions to some difference differential equations   总被引:6,自引:0,他引:6       下载免费PDF全文
王振  张鸿庆 《中国物理》2006,15(10):2210-2215
In this paper, we use our method to solve the extended Lotka--Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of \sinh and \cosh, periodic solutions presented by trigonometric functions of \sin and \cos, and rational solutions. This method can be used to solve some other nonlinear difference--differential equations.  相似文献   

8.
Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.  相似文献   

9.
Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.  相似文献   

10.
A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method and the conjugate complex number method of exponential functions are applied to this system. As a result, new analytical eomplexiton and soliton solutions are obtained synchronously in a physical field. Then their structures, time evolution and interaction properties are further discussed graphically.  相似文献   

11.
In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .  相似文献   

12.
魏龙 《理论物理通讯》2010,(10):599-602
Based on a transformed Painlev~ property and the variable separated ODE method, a function transfor- mation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient the resulting equations by some methods. As an application, are formally derived. ordinary differential equations, then we seek for solutions to exact solutions for the combined sinh-cosh-Gordon equation  相似文献   

13.
We investigate the Einstein field equations corresponding to the Weyl-Lewis-Papapetrou form for an axisymmetric rotating field by using the classical symmetry method. Using the invafiance group properties of the governing system of partial differential equations (PDEs) and admitting a Lie group of point transformations with commuting infinitesimal generators, we obtain exact solutions to the system of PDEs describing the Einstein field equations. Some appropriate canonical variables are characterized that transform the equations at hand to an equivalent system of ordinary differential equations and some physically important analytic solutions of field equations are constructed. Also, the class of axially symmetric solutions of Einstein field equations including the Papapetrou solution as a particular case has been found.  相似文献   

14.
We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.  相似文献   

15.
燕秀林  冉政 《中国物理 B》2009,18(10):4360-4365
The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point velocity distribution function equation obtained by Tatsumi (2004) leads to an exact analysis of all possible cases and to all admissible solutions of the problem. This paper revisits this interesting problem from a new point of view, and obtains a new complete set of solutions. Based on these exact solutions, some physically significant consequences of recent advances in the theory of homogenous statistical solution of the Navier--Stokes equations are presented. The comparison with former theory was also made. The origin of non--Gaussian character could be deduced from the above exact solutions.  相似文献   

16.
<正>In this paper,based on Hirota’s bilinear method,the Wronskian and Grammian techniques,as well as several properties of the determinant,a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented.They guarantee that the Wronskian determinant and the Grammian determinant solve the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form.Then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions.At last,with the aid of Maple,some of these special exact solutions are shown graphically.  相似文献   

17.
In a recent article [Commun. Theor. Phys. (Beijing, China) 47 (2007) 270], Cao et al. gave some nontrivial solutions of a Riccati equation by using symbolic and algebra computation. They took these solutions, which are in the form of q-deformed hyperbolic and triangular functions as new solutions. In this comment, we will show that these solutions are just the special cases of some known solutions of the Riccati equation and thus they are not new solutions.  相似文献   

18.
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.  相似文献   

19.
In this paper, we investigate the new agegraphic dark energy model in the framework of Brans-Dicke theory, which is a natural extension of the Einstein's general relativity. In this framework the form of the new agegraphic dark energy density takes as pq = 3n^2Ф(t)η^-2, where η is the conformal age of the universe and Ф(t) is the Brans-Dicke scalar field representing the inverse of the time-variable Newton's constant. We derive the equation of state of the new agegraphic dark energy and the deceleration parameter of the universe in the Brans-Dicke theory. It is very interesting to find that in the Brans-Dicke theory the agegraphic dark energy realizes quintom-like behavior, i.e., its equation of state crosses the phantom divide ω= -1 during the evolution. We also compare the situation of the agegraphic dark energy model in the Brans-Dicke theory with that in the Einstein's theory. In addition, we discuss the new agegraphic dark energy model with interaction in the framework of the Brans-Dicke theory.  相似文献   

20.
In this paper, we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation by using the (G′/G)-expansion method, and with the help of Maple. As a result, non-travelling wave solutions with three arbitrary functions are obtained including hyperbolic function solutions, trigonometric function solutions, and rational solutions. This method can be applied to other higher-dimensional nonlinear partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号