首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The binding to Lon protease through biotinylated aptamers whose structures contain G-quadruplex fragments with magnetic nanoparticles (MNPs) functionalized by streptavidin was investigated. The conditions of binding of target aptamers to MNPs are met. The resulting complexes are proposed for detection of Lon protease in different biological sources and for constructing a novel biomagnetic nanosensor immunoassay system.  相似文献   

2.
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.  相似文献   

3.
In the race towards miniaturization in nanoelectronics, magnetic nanoparticles (MNPs) have emerged as potential candidates for their integration in ultrahigh‐density recording media. Molecular‐based materials open the possibility to design new tailor‐made MNPs with variable composition and sizes, which benefit from the intrinsic properties of these materials. Before their implementation in real devices is reached, a precise organization on surfaces and a reliable characterization and manipulation of their individual magnetic behavior are required. In this paper, it is demonstrated how molecular‐based MNPs are accurately organized on surfaces and how the magnetic properties of the individual MNPs are detected and tuned by means of low‐temperature magnetic force microscopy (LT‐MFM) with variable magnetic field. The magnetization reversal on isolated and organized MNPs is investigated; in addition, the temperature dependence of their magnetic response is evaluated.  相似文献   

4.
Key advances in multifunctional magnetic nanoparticles (MNPs) for magnetic resonance (MR) image-guided pho- tothermal therapy of cancer are reviewed. We briefly outline the design and fabrication of such multifunctional MNPs. Bimodal image-guided photothermal therapies (MR/fluorescence and MR/ultrasound) are also discussed.  相似文献   

5.
储鑫  余靓  侯仰龙 《中国物理 B》2015,24(1):14704-014704
Progress in surface modification of magnetic nanoparticles(MNPs)is summarized with regard to organic molecules,macromolecules and inorganic materials.Many researchers are now devoted to synthesizing new types of multi-functional MNPs,which show great application potential in both diagnosis and treatment of disease.By employing an ever-greater variety of surface modification techniques,MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging(MRI),fluorescent marking,cell targeting,and drug delivery.  相似文献   

6.
The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.  相似文献   

7.
The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g?1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.  相似文献   

8.
The investigations of nuclear magnetic resonance (NMR) relaxation of protons in aqueous solution and 2% agar–agar gel in the presence of magnetic nanoparticles were performed. To identify the effect of magnetic nanoparticles on the contrast of magnetic resonance images, the dependences of the MR signal intensity on the parameters of the two pulse radio-frequency (RF) sequences (spin-echo, gradient-echo) most commonly used in MRI for different values of the magnetic nanoparticle (MNP) concentration were simulated and analyzed. Recommendations for choosing the optimal values of pulse RF sequence parameters for MR imaging (MRI) in the presence of MNPs are formulated. MRI studies of phantom samples with 2% agar–agar gel containing MNPs have been performed for choosing the fast pulse RF sequence which shows the greatest contrast effect on MR images. A program for modeling magnetic resonance tomograms and determination of optimal values of pulse RF sequence parameters to achieve the best contrast of magnetic resonance images is developed. This program allows to reduce the time of MRI studies, to assess the possibility of using MNPs for contrast of MR images and to simulate the MR image in the presence of magnetic nanoparticles at the planning stage of procedures in MR-guided theranostics.  相似文献   

9.
We describe the surface modification of magnetic nanoparticles (MNPs), the coverage of poly(N-isopropylacrylamide) (PNiPAM) microgel with the MNPs and the inductive heating of these carriers. PNiPAM surface itself was modified using the layer-by-layer (LbL) assembly of polyelectrolytes to facilitate the deposition of surface-modified MNPs. One advantage of this concept is it allows the tuning of the magnetic and thermoresponsive properties of individual components (nanoparticles and microgels) separately before assembling them. Characterisations of the hybrid core–shell are discussed. In particular, it is shown that (i) each layer is successfully deposited and, more importantly, (ii) the coated microgel retains its thermoresponsive and magnetic behaviour.  相似文献   

10.
The study of nanoparticles (NPs) and their application in different areas of research, including biomedicine, is attracting the attention of researchers worldwide. Numerous investigations published during the last 20 years cover the fabrication of new materials in the nanoscale, and several uses have been proposed. Metallic nanoparticles (MNPs) have generated a high level of interest, based on improved optical, electrical and magnetic properties, ease of manufacturing, small sizes, and easy functionalization. However, when it comes to Biomedicine, particle aggregation, possible toxicity, and the need for effective cell internalization, still demand active investigation. The main strategy to overcome these drawbacks is possibly the use of capping agents to increase the stability of the particles in dispersion, their biocompatibility and functionalization. In this review, important concepts and characteristics of MNPs, are collected and described. The importance of surface coating for biomedical applications of metallic nanoparticles as well as the most used capping agents and metallic nanomaterials, are also discussed. Finally, the text includes examples and essential characteristics for the biomedical use of MNPs, including the consideration of important challenges. Aspects such as relevant biological activity, increased biocompatibility and functionalization potential are among the most desirable attributes of a capping agent.  相似文献   

11.
Magnetic resonance (MR) imaging is capable of demonstrating human anatomy and pathological conditions. Iron oxide magnetic nanoparticles (MNPs) have been used in MR imaging as liver-specific contrast medium, cellular and molecular imaging probes. Because few studies focused on the MNPs other than iron oxides, we developed FeNi alloy MNPs coated with polyethylenimine (PEI). In this study, we demonstrated PEI-coated FeNi MNPs are able to label the cells, which could be detected in MR imaging. For labelling purpose, MNPs were incubated with mouse macrophage cell line (Raw 264.7) for 24 h and these PEI-labelled FeNi alloy MNPs can be uptaken by macrophages efficiently compared with Ferucarbotran, a commercialized superparamagnetic iron oxide (SPIO) under flow cytometry measurement. Besides, these cells labelled with MNPs could be imaged in MR with the identical potency as Ferucarbotran. Further investigation of the cells using Prussian blue staining revealed that FeNi alloy MNPs inside the cells is not oxidized. This phenomenon alleviated the consideration of potential risk of nickel toxicity. We conclude that PEI-coated FeNi MNPs could be candidate for MR contrast medium.  相似文献   

12.
The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe3O4). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH4OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8?nm for CS MNPs in TEM and between 58 and 103?nm in DLS. The average diameters of bare MNPs were found as around 18?nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23?% by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging?(MRI), and magnetic hyperthermia.  相似文献   

13.
Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.  相似文献   

14.
A challenge for future applications in nanotechnology is the functional integration of nano-sized materials into cellular structures. Here we investigated superparamagnetic Fe3O4 iron oxide nanoparticles coated with a lipid bilayer for uptake into cells and for targeting subcellular compartments. It was found that magnetic nanoparticles (MNPs) are effectively taken up into cells and make cells acquire magnetic activity. Biotin-conjugated MNPs were further functionalized by binding of the fluorescent tag streptavidin–fluorescein isothiocyanate (FITC) and, following uptake into cells, shown to confer magnetic activity and fluorescence labeling. Such FITC-MNPs were localized in the lysosomal compartment of cells which suggests a receptor-mediated uptake mechanism.  相似文献   

15.
Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1–1.2) pa s at constant shear rate of 20 s−1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s−1 to 150 s−1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.  相似文献   

16.
Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54–160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.  相似文献   

17.
The magnetic nanoparticles (MNPs) Therma-Max™ were used as a carrier to develop an automated sandwich chemiluminescent enzyme immunoassay (CLEIA) to detect thyroid-stimulating hormone (TSH) in a sensitive and specific way. The Therma-Max™ particles allow for automation because, unlike magnetic microspheres, they are completely dispersed in aqueous solution and allow for accurate automatic handling. Signal intensities detected with MNPs were 8-fold higher than those found with conventional micron-sized magnetic particles. A reproducibility study suggests that these particles allow for a stable detection method, as the coefficient of variation (CV) is less than 6% (n=10).  相似文献   

18.
Magnetite nanoparticles (MNPs) were prepared using the ferric acetylacetonate as the sole iron source in a facile hydrothermal route, while poly(acrylic acid) (PAA) was chosen as the stabilizer via one-step functionalized MNPs for better hydrophilic properties. The orthogonal was used in the paper for the experimental parameters optimization, including the solvent, the reaction time, the amount of stabilizer and the presynthesis. The obtained highly water dispersible MNPs with uniform size from about 50 to about 100 nm was individually composed of many monodisperse magnetite crystallites approximately 6 nm in size. And the MNPs show high magnetic properties, whose magnetite content was up to 76.76% and the saturation magnetization was 39.0 emu/g. Later the formation mechanism of MNPs was also discussed. Thus the MNPs proved to be very promising for biomedical applications.  相似文献   

19.
In the last years, hyperthermia induced by the heating of magnetic nanoparticles (MNPs) in an alternating magnetic field received considerable attention in cancer therapy. The thermal effects could be automatically controlled by using MNPs with selective magnetic absorption properties. In this paper, we analyze the temperature field determined by the heating of MNPs, injected in a malignant tissue, subjected to an alternating magnetic field. The main parameters which have a strong influence on temperature field are analyzed. The temperature evolution within healthy and tumor tissues are analyzed by finite element method (FEM) simulations in a thermo-fluid model. The cooling effect produced by blood flow in blood vessels from the tumor is considered. A thermal analysis is conducted under different distributions of MNP injection sites. The interdependence between the optimum dose of the nanoparticles and various types of tumors is investigated in order to understand their thermal effect on hyperthermia therapy. The control of the temperature field in the tumor and healthy tissues is an important step in the healing treatment.  相似文献   

20.
Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings.
Graphical abstract Interrelationship of agglomeration, colloidal stability, and magnetic separability of nanoparticles
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号