首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

2.
《Comptes Rendus Physique》2016,17(10):1060-1071
We review recent developments in nonlinear quantum transport through nanostructures and mesoscopic systems driven by thermal gradients or in combination with voltage biases. Low-dimensional conductors are excellent platforms for analyzing both the thermoelectric and heat dynamics beyond the linear response because, due to their small size, a small temperature difference applied across regions gives rise to large thermal biases. We offer a theoretical discussion based on the scattering approach to highlight the differences between the linear and the nonlinear regimes of transport. We discuss recent experiments on quantum dots and molecular junctions subjected to strong temperature differences. Theoretical predictions concerning the Kondo effect and heat rectification proposals are briefly examined. An important issue is the calculation of thermoelectric efficiencies including nonlinearities. Cross Seebeck effects and nonlinear spin filtering arise in superconductors and topological insulators, while mixed noises between charge and heat currents are also considered. Finally, we provide an outlook on the possible future directions of the field.  相似文献   

3.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

4.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

5.
郑军  李春雷  杨曦  郭永 《物理学报》2017,66(9):97302-097302
基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.  相似文献   

6.
We investigate the time evolution of filling numbers of localized electrons in the system of two coupled single-level quantum dots (QDs) connected with the continuous-spectrum states in the presence of Coulomb interaction. We consider correlation functions of all orders for electrons in the QDs by decoupling higher-order correlations between localized and band electrons in the reservoir. We analyze different initial charge configurations and consider Coulomb correlations between localized electrons both within the dots and between the different dots. We reveal the presence of a dynamical charge trapping effect in the first QD in the situation where both dots are occupied at the initial instant. We also find an analytic solution for the time-dependent filling numbers of the localized electrons for a particular configuration of the dots.  相似文献   

7.
We study the thermoelectric effect in a serial-coupled two quantum dots (QDs) device in the Coulomb blockade regime. The electrical conductance, the thermal conductance, the thermopower, and the thermoelectrical figure of merit are calculated by using the Green's function method. It is found that the energy levels of the two dots are split into a series of molecular states, where the electrical and the thermal conductances show resonance peaks. These peaks in the electrical conductance are eliminated by the increase of the temperature, while those in the thermal conductance are enhanced because of the bipolar effect. In quite high temperature regime, the figure of merit has two huge peaks with maximums exceeding 20 in the vicinity of the electron-hole symmetry point. The magnitude of the figure of merit will be suppressed for unequal dots' levels, but is enhanced by the asymmetry of the dot-lead coupling strengths.  相似文献   

8.
In a system of N interacting single-level quantum dots (QDs), we study the relaxation dynamics and the current–voltage characteristics determined by symmetry properties of the QD arrangement. Different numbers of dots, initial charge configurations, and various coupling regimes to reservoirs are considered. We reveal that effective charge trapping occurs for particular regimes of coupling to the reservoir when more than two dots form a ring structure with the CN spatial symmetry. We reveal that the effective charge trapping caused by the CN spatial symmetry of N coupled QDs depends on the number of dots and the way of coupling to the reservoirs. We demonstrate that the charge trapping effect is directly connected with the formation of dark states, which are not coupled to reservoirs due to the system spatial symmetry CN. We also reveal the symmetry blockade of the tunneling current caused by the presence of dark states.  相似文献   

9.
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.  相似文献   

10.
In this paper we review our recent study of coherent electronic properties of coupled two-dimensional quantum dot arrays using numerical exact-diagonalization methods on a Mott–Hubbard type correlated tight-binding model. We predict the existence of a novel kind of persistent current in a two-dimensionalisolatedarray of quantum dots in a transverse magnetic field. We calculate the conductance spectrum for resonant tunneling transport through a coherent two-dimensional array of quantum dots in the Coulomb Blockade regime. We also calculate the effective two-terminal capacitance of an array coupled to bias leads.  相似文献   

11.
徐卫平  张玉颖  王强  聂一行 《中国物理 B》2016,25(11):117307-117307
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device.  相似文献   

12.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   

13.
Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur-Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.   相似文献   

14.
By means of the Keldysh Green's function method, we investigate the spin-polarized electron transport in a three-terminal device, which is composed of three normal metal leads and two serially-coupled quantum dots (QDs). The Rashba spin-orbit interaction (RSOI) is also considered in one of the QDs. We show that the spin-polarized charge current with arbitrary spin polarization can be obtained because of the quantum spin interference effect arising from the Rashba spin precession phase, and it can be modulated by the system parameters such as the applied external voltages, the RSOI strength, the QD levels, as well as the dot-lead coupling strengths. Moreover, a fully spin-polarized current or a pure spin current without any accompanying charge current can also be controlled to flow in the system. Our findings indicate that the proposed model can serve as an all-electrical spin device in spintronics field.  相似文献   

15.
Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski–Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system.  相似文献   

16.
李宏伟  王太宏 《物理学报》2001,50(2):262-267
设计了含有InAs自组装量子点(SAQDs)的新型金属半导体金属隧穿结构,研究了其直流输运特性,观察到了电流迟滞回路现象.这种回路现象是由于紧邻金属肖特基接触的量子点充电和放电引起的,也可以说是由外加电压控制的量子点的单电子过程引起的.分析了量子点总体的充放电特性,量子点中电子在高电场下隧穿出量子点的概率变化决定了量子点的放电过程,而充电过程是由流过量子点层的二极管正向电流决定.理论拟合结果显示充电过程主要由于量子点基态能级俘获电子照成的,激发态对量子点充放电过程只有微弱影响. 关键词: 迟滞现象 自组装量子点 单电子过程  相似文献   

17.
With the rapidly increasing integration density and power density in nanoscale electronic devices, the thermal management concerning heat generation and energy harvesting becomes quite crucial. Since phonon is the major heat carrier in semiconductors, thermal transport due to phonons in mesoscopic systems has attracted much attention. In quantum transport studies, the nonequilibrium Green’s function (NEGF) method is a versatile and powerful tool that has been developed for several decades. In this review, we will discuss theoretical investigations of thermal transport using the NEGF approach from two aspects. For the aspect of phonon transport, the phonon NEGF method is briefly introduced and its applications on thermal transport in mesoscopic systems including one-dimensional atomic chains, multi-terminal systems, and transient phonon transport are discussed. For the aspect of thermoelectric transport, the caloritronic effects in which the charge, spin, and valley degrees of freedom are manipulated by the temperature gradient are discussed. The time-dependent thermoelectric behavior is also presented in the transient regime within the partitioned scheme based on the NEGF method.  相似文献   

18.
Non-linear charge and heat transport through a single-level quantum dot in the Coulomb blockade regime is investigated within the framework of non-equilibrium Green function formalism and power output and efficiency of the device are studied. It is found that maximum power as well as efficiency depends on the relative orientation of magnetic moments in electrodes and can vary with polarization factor p. In general, power output is suppressed in magnetic systems and decreases with polarization. The highest efficiency can be attained in antiparallel configuration, and moreover, it does not depend on p. Spin power as well as spin efficiency of the system is introduced and discussed. It is also shown that in the Coulomb blockade regime the (spin) efficiency of the device operating under maximum power conditions varies with temperature bias in a non-monotonic way and shows a flat maximum for low ΔT.  相似文献   

19.
In t.his contribution, we briefly recall the basic concepts of quantum optics and properties of semicon- ductor quantum clot. (QD) which a.re necessary to the nnderstanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantmn emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as opti- cal properties of the QDs. We then review the localizatioll of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and perfornances in terms of strong coupling regime, elfieiency, directionality, and polarization control. Furthermore, we will discuss the recenl, progress on the fabrication of single photon sources, and various a.pproaehes for embedding single QDs into mieroca,vities or photonic crystal nanoeavities and show how to ex- tend the wavelength range. We focus in part;icular on new generations of electrically driven QD single photon source leading to high repetition rates, efficiencies at elevated temperature operation. Besides strong eoupling regime, and high collection new development;s of room temperature sin- gle photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for pract ical single-photon sources are also discussed.  相似文献   

20.
We report the successful growth of ZnSe and ZnTe quantum dots (QDs) embedded in ZnS on GaAs substrate. These QDs have good optical properties and show quantum confinement effect. High-resolution electron scanning microscope studies show that these QDs are grown in Volmer–Weber mode. It is found that the size of the QDs is controlled by the growth duration. When the growth time is short, high density of QDs could be fabricated, but with a long growth time the small QDs get together to form a large cluster. We also show that with this growth method it is possible to grow both ZnSe quantum and ZnTe QDs on one substrate at the same time. For this dual QDs system, two peaks corresponding to the emission from the ZnSe dots (3.0 eV, blue–violet) and ZnTe dots (2.6 eV, green–blue) could be observed at the same time in the photoluminescence measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号