首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of unilateral hearing loss on the localization of horizontal plane sound sources ipsilateral and contralateral to the side of the unimpaired ear was examined. Normal-hearing listeners judged the direction of six loudspeakers, separated by 30° and arrayed frontally or laterally on the right side with the right or left ear occluded. The benefit of massed practice over three sequential days was assessed. For the frontal loudspeaker array, azimuthal discrimination on the occluded side was poor but only 30% of sounds were perceived to come from the unoccluded side. For the right lateral array, when the ipsilateral ear was unoccluded, front and back were rarely confused. Accuracy mainly decreased for speakers close to the midline axis, front and back. When the contralateral ear was unoccluded responses were biased toward the rearmost speaker. Practice did not improve performance. The findings were discussed within the context of military operations. They support the need for job-specific hearing standards.  相似文献   

2.
A parametric loudspeaker radiates an audible signal by the interaction of the primary wave that is amplitude modulated and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear acoustics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station, street etc. In this paper, we investigated sound localization of stereo reproduction using two parametric loudspeakers in comparison with that using two ordinary dynamic loudspeakers. In subjective tests, the binaural information ILD (Interaural Level Difference) or ITD (Interaural Time Delay) was focused on. To investigate the characteristics of sound localization in a wide listening area, three typical listening positions were picked up. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. The used parametric loudspeaker was an equilateral hexagon. The subjective test led to the results that when the parametric loudspeakers were used, the listeners at the three typical listening positions perceived the correct sound localization of not only pure tone but also pink noise and when the ordinary dynamic loudspeakers were used, except for the case of pure tone with ITD, the tendency was almost similar to those using the parametric loudspeakers. The second subjective tests were conducted in order to investigate in details the difference between parametric loudspeakers and ordinary dynamic loudspeakers by increasing the number of subjects. In the case of ITD and 500 Hz using the ordinary dynamic loudspeakers, three types of sound localization were categorized, in which the reversed type was major and the normal and the other types were minor. The ILDs which were measured with a dummy head and were calculated with several formulas were almost the same and indicated the reasons of the reversed typed sound localization and a serious influence of the crosstalk. It was found that in the case of pure tone with ITD, the contradiction between the binaural information ILD and ITD is remarkable, because the directivity of the ordinary dynamic loudspeakers was so dull that the crosstalk components had a serious influence on sound localization. It was determined the parametric loudspeaker could transmit correct binaural information to the listener, because the directivity of the parametric loudspeakers was so sharp that it suppressed the cross talk components.  相似文献   

3.
Ambisonics is a series of flexible spatial sound reproduction systems based on spatial harmonics decomposition of sound field. Traditional horizontal and spatial Ambisonics reconstruct horizontal and spatial sound field with certain order of spatial harmonics, respectively. Both the Shannon-Nyquist spatial sampling frequency limit for accurately reconstructing sound field and the complexity of system increase with the increasing order of Ambisonics. Based on the fact that the horizontal localization resolution of human hearing is higher than vertical resolution, mixed-order Ambisonics (MOA) reconstructs horizontal sound field with higher order spatial harmonics, while reconstructs vertical sound field with lower order spatial harmonics, and thereby reaches a compromise between the perceptual performance and the complexity of system. For a given order horizontal Ambisoncis or MOA reproduction, the number of horizontal loudspeakers is flexible, providing that it exceeds some low limit. By using Moore’s revised loudness model, the present work analyzes the influence of the number of horizontal loudspeakers on timbre both in horizontal Ambisonics and MOA reproduction. The binaural loudness level spectra (BLLS) of Ambisoncis reproduction are calculated and then compared with those of target sound field. The results indicate that below the Shannon-Nyquist limit of spatial sampling, increasing the number of horizontal loudspeakers influence little on BLLS then timbre. Above the limit, however, the BLLS for Ambisoncis reproduction deviate from those of target sound field. The extent of deviation depends on both the direction of target sound field and the number of loudspeakers. Increasing the number of horizontal loudspeakers may increase the change of BLLS then timbre in some cases, but reduce the change in some other cases. For MOA, the influence of the number of horizontal loudspeakers on BLLS and timbre reduces when virtual source departs from horizontal plane to the high or low elevation. The subjective evaluation experiment also validates the analysis.  相似文献   

4.
考虑头部转动带来的动态因素对听觉垂直定位的贡献,提出了前方空间环绕声的四扬声器虚拟重放方法。4个扬声器分别布置在水平面左前、右前以及高仰角的左前上、右前上方向,并采用听觉传输信号处理的方法将多通路空间环绕声信号转换为4个扬声器的重放信号。以9.1通路空间环绕声虚拟重放为例,采用头相关传输函数对双耳声压及其包含的定位因素进行分析表明,该方法可以产生正确的双耳时间差及其随头部转动的变化,从而产生合适的侧向定位双耳因素和垂直定位的动态因素。而心理声学实验结果表明,该方法可以重放稳定的前方空间的水平和垂直虚拟源。因此,四扬声器布置结合听觉传输处理足以重放前方空间环绕声的垂直定位信息,实现多通路空间环绕声的向下混合与简化。   相似文献   

5.
张驰  谢菠荪 《应用声学》2024,43(1):64-75
典型的多通路空间声扬声器布置一般包含水平面左前、右前,高仰角左前上、右前上四个方向的扬声器。 本文提出一种利用该四个扬声器产生前方水平与垂直方向虚拟源的一阶局域Ambisonics 信号馈给法。该信号馈给法是通过对目标和重放声场进行球谐函数展开并取一阶近似得到。采用简化的头部模型和精确的头相关传输函数模型分析表明,一阶局域Ambisonics 信号馈给法可以产生合适的低频听觉定位因素,包括双耳时间差及其随头部转动的动态变化。虚拟源定位实验结果表明,该方法可以在扬声器布置的范围内,甚至在略超出扬声器布置的范围内产生不同方位角和仰角的虚拟源。因而本文的方法可用在多通路空间声重放中产生与图像配合的虚拟源定位效果。  相似文献   

6.
Eight listeners were required to locate a train of 4.5-kHz high-pass noise bursts emanating from loudspeakers positioned +/- 30, +/- 20, +/- 10, and 0 deg re: interaural axis. The vertical array of loudspeakers was placed at 45, 90, and 135 deg left of midline. The various experimental conditions incorporated binaural and monaural listening with the latter utilizing the ear nearest or ear farthest from the sound source. While performance excelled when listening with only the near ear, the contribution of the far ear was statistically significant when compared to localization performance when both ears were occluded. Based on head related transfer functions for stimuli whose bandwidth was 1.0 kHz, four spectral cues were selected as candidates for influencing location judgments. Two of them associated relative changes in energy across center frequencies (CFs) with vertical source positions. The other two associated an absolute minimum (maximum) energy for specific CFs with a vertical source position. All but one cue when measured for the near ear could account for localization proficiency. On the other hand, when listening with the far ear, maximum energy at a specific CF outperformed the remaining cues in accounting for localization proficiency.  相似文献   

7.
The purpose of this research was to determine if infants, like adults, show differential localization performance in the median sagittal plane (MSP) as a function of the spectrum of the signal. Infants 6-18 months of age were seated in a dark room facing an array of nine loudspeakers, with one loudspeaker positioned at ear level, 0 degrees, and four each positioned above and below ear level at 4 degrees, 8 degrees, 12 degrees, and 16 degrees. A two-alternative, forced-choice procedure was used in which a sequence of noise bursts was presented at 0 degrees and then shifted vertically, above or below 0 degrees, and continued to be presented until the infant made a directional head and/or eye movement; correct responses were visually reinforced. For each of three bandpass noise conditions (less than 4 kHz, 4-8 kHz, 8-12 kHz), minimum audible angle (MAA) for each listener, i.e., the smallest of the four angular shifts in vertical sound location that the listener could reliably detect, was estimated. Results indicated that MAA systematically decreased with increasing age, revealing an increasingly finer partitioning of auditory space. Moreover, performance at each age revealed the importance of high frequencies for localization in the MSP. Infants did not reliably localize the low-pass signal (less than 4 kHz) and showed the best performance to the signal comprising the highest frequencies (8-12 kHz). These findings reveal systematic age-related improvements in sound localization abilities during infancy, and suggest that spectral cues similar to those for adults operate for infants in vertical localization.  相似文献   

8.
Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.  相似文献   

9.
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m × 2.74 m × 2.40 m. With this method, the sound was reproduced by a matrix of 4 × 5 loudspeakers in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat frequency response with deviations within ±5 decibels from the desired value was achieved. A higher demanding performance with deviations within ±1.5 decibels from a flat frequency response was attained in the interval between 20 Hz and 280 Hz. At the same time, the impulse response was quite well approximated to a delayed delta function in the listening zone. Examples of the spatial distribution of the sound field are also shown.  相似文献   

10.
针对短时傅里叶变换在扬声器异常声检测中有效信息提取的随机性问题,提出了特征点法在扬声器异常声检测中的应用.此方法基于扬声器经扫频信号激励所得响应信号的短时傅里叶变换时频图,用改进的尺度不变特征转换算法对合格扬声器与异常声扬声器做特征提取,并将多组特征点经分割剔除后叠加组成特征矩阵模板.以合格扬声器样本提取特征曲线阈值构...  相似文献   

11.
This paper deals with a new car horn device made of a sound synthesizer and an electrodynamic horn loudspeaker. It presents an one-dimensional model allowing to predict the loudspeaker efficiency and a specific method to estimate experimentally the model parameters. First, this model aims at reducing the time spent in the design process. Second it aims at correcting the sound emitted by the sound synthesizer in order that the listener hears the sound designed for creating the warning message. The study gives a survey of the vast loudspeaker literature. It is based on the conventional electroacoustic approach used for electrodynamic loudspeakers and on wave propagation models used for characterizing acoustic horns. The estimation of the model parameter values is performed using measurements of the electrical impedance of the loudspeaker and of the acoustic impedance of the horn. The model is assessed by comparing the calculated and measured electrical impedances and horn efficiencies. Results show that the model predicts well the horn efficiency up to 2500 Hz, the limitation being due to the horn radiation impedance modelization.  相似文献   

12.
在两扬声器虚拟声重放中,通过精确重构双耳声压而产生不同的空间听觉感知。其重放的定位性能应该是由双耳声压控制的代价和稳定性所共同决定的。过去研究主要对双耳声压控制的稳定性进行分析,并以此作为扬声器布置和信号处理的依据。该文研究表明仅对双耳声压的稳定性分析是不足以完全衡量扬声器虚拟声重放的定位性能的。进一步采用虚拟声信号处理滤波器响应平均功率对双耳声压控制的代价进行分析。结果表明,缩窄左右对称扬声器布置的张角或采用非对称扬声器布置会明显增加产生侧向目标虚拟源时的双耳声压控制代价。虚拟源(虚拟声像)定位实验表明,双耳声压控制代价增加会引起虚拟源定位缺陷。实际应用中,为了有效产生侧向虚拟源,应避免采用过窄张角(如立体声偶极)和非对称的扬声器布置。  相似文献   

13.
The perception of spatially distributed sound sources was investigated by conducting two listening experiments in anechoic conditions with 13 loudspeakers evenly distributed in the frontal horizontal plane emitting incoherent noise signals. In the first experiment, widely distributed sound sources with gaps in their distribution emitted pink noise. The results indicated that the exact loudspeaker distribution could not be perceived accurately and that the width of the distribution was perceived to be narrower than it was in reality. Up to three spatially distributed loudspeakers that were simultaneously emitting sound could be individually perceived. In addition, the number of loudspeakers that were indicated as emitting sound was smaller than the actual number. In the second experiment, a reference with 13 loudspeakers and test cases with fewer loudspeakers were presented and their perceived spatial difference was rated. The effect of the noise bandwidth was of particular interest. Noise with different bandwidths centered around 500 and 4000 Hz was used. The results indicated that when the number of loudspeakers was increased from four to seven, the perceived auditory event was very similar to that perceived with 13 loudspeakers at all bandwidths. The perceived differences were larger in wideband noise than in narrow-band noise.  相似文献   

14.
Auditory Mixed Reality (MR) systems that reproduce Three-Dimensional (3-D) acoustic sound fields have recently become a research focus because the combination of visual and auditory MR systems can achieve a greater sense of presence than conventional visual MR systems. General auditory MR systems usually use a headphone-based system with a Head-Related Transfer Function (HRTF), which is a major system for reproducing 3-D acoustic sound fields. However, the localization accuracy of sound images with a HRTF depends on the individual. On the other hand, we have already proposed a system for reproducing a 3-D acoustic sound field with parametric loudspeakers instead of headphones. The 3-D acoustic sound field reproduced by this system has achieved a highly accurate localization of sound images. However, one problem is that it is difficult to reproduce lower frequency sounds using parametric loudspeakers, which causes a poorer sound quality. We tried to accomplish a greater sense of presence for 3-D acoustic sound fields based on a hybrid combination of an electrodynamic subwoofer and the parametric loudspeakers by improving the sound quality. Sound images were formed at the target location using the parametric loudspeakers, and a lower frequency sound was compensated for by using the electrodynamic subwoofer. Subjective evaluation experiments were conducted to verify the effectiveness of the proposed system. We confirmed the improved sound quality while maintaining a higher accuracy of sound image localization by using the proposed system. We also confirmed the optimum parameters of the proposed system to achieve a greater sense of presence.  相似文献   

15.
This study investigates the vertical localization of single complex tones (monads) and simultaneous complex tone pairs (dyads), especially as it is affected by their fundamental frequency and source elevation. Two complex tone timbres are considered: one consisting of five low-order harmonics, and the other of all odd harmonics (a square wave). Sound sources were at -15, 0, 15, and 30 deg from the horizontal plane at ear height. For eight subjects, this source array was in the median plane, and for a further nine subjects, it was directly to the subject's left (lateral plane). The subjects localized the angle of the auditory image(s) of one or two complex tones around the vertical plane containing the sound sources. Mean responses for the five-harmonic complex tones show a systematic effect (referred to as Pratt's effect) of fundamental frequency on vertical localization--whereby high-frequency complex tones are localized to positions higher than low-frequency complex tones for equivalent source positions. For the square wave, the sound-source position dominates localization, although some effect of fundamental frequency is evident for median plane sources.  相似文献   

16.
池水莲  谢菠荪  饶丹 《应用声学》2009,28(4):291-299
本文从理论和实验上探讨了扬声器的特性不匹配对重放虚拟声像的影响。结果表明,用两扬声器进行虚拟听觉重放时,在某些频率段和虚拟声像角度,两扬声器间很小的幅频特性差异或相频特性差异都足以对虚拟声像方向产生明显的影响。扬声器特性的差异对前方范围的声像影响较小,但对侧向范围的声像影响较大,因而两扬声器的特性不匹配也是导致虚拟听觉重放时侧向声像位置畸变的重要原因之一。而在实际应用中要特别注意两扬声器的特性匹配,或者要用信号处理的方法对两扬声器的特性进行校正。  相似文献   

17.
An experiment was carried out to determine whether sudden loss of vision in one eye would result in a bias in sound localization in the direction of the viewing eye. Fifteen normal-sighted young adults were tested binocularly and with the right or left eye covered. Within each vision condition, sound localization was assessed using three different arrays of six loudspeakers, positioned frontally and on the right and left sides of space, in combination with two stimuli, a one-third octave noise band centred at 4 kHz and broadband noise. These assessed the utilization of mainly the interaural level difference cue and binaural and spectral cues in combination, respectively. One block of 90 speaker identification trials was presented for each of the 18 conditions. For the lateral arrays in combination with the broadband noise stimulus, monocular vision resulted in decreased accuracy on the contralateral side. Errors were in the direction of the viewing eye. While monocularity resulted in performance decrements with the 4-kHz stimulus, the error pattern was not consistent. These results support the hypothesis of visually guided auditory adaptation of binaural and spectral cues in combination in response to sudden deprivation of vision in one eye.  相似文献   

18.
The sound fields created by three different settings of a 5 m long linear loudspeaker array were studied experimentally in the present investigation in an attempt to find out a method to produce a reasonable sound field for scaled down model experiments. The first setting was with all the loudspeakers facing vertically upward, while the second setting was with all the loudspeakers facing the horizontal. The last one resembled the first setting but the loudspeakers were put inside a small partial enclosure whose opening was facing vertically upward. Results show that the last setting can produce a sound field with characteristics close to those of a two-dimensional sound field. The second setting results in a sound directivity pattern relevant to that of the measured A-weighted traffic noise.  相似文献   

19.
An experiment was conducted to determine the effect of aging on sound localization. Seven groups of 16 subjects, aged 10-81 years, were tested. Sound localization was assessed using six different arrays of four or eight loudspeakers that surrounded the subject in the horizontal plane, at a distance of 1 m. For two 4-speaker arrays, one loudspeaker was positioned in each spatial quadrant, on either side of the midline or the interaural axis, respectively. For four 8-speaker arrays, two loudspeakers were positioned in each quadrant, one close to the midline and the second separated from the first by 15 degrees, 30 degrees, 45 degrees, or 60 degrees. Three different 300-ms stimuli were localized: two one-third-octave noise bands, centered at 0.5 and 4 kHz, and broadband noise. The stimulus level (75 dB SPL) was well above hearing threshold for all subjects tested. Over the age range studied, percent-correct sound-source identification judgments decreased by 12%-15%. Performance decrements were apparent as early as the third decade of life. Broadband noise was easiest to localize (both binaural and spectral cues were available), and the 0.5-kHz noise band, the most difficult to localize (primarily interaural temporal difference cue available). Accuracy was relatively higher in front of than behind the head, and errors were largely front/back mirror image reversals. A left-sided superiority was evident until the fifth decade of life. The results support the conclusions that the processing of spectral information becomes progressively less efficient with aging, and is generally worse for sources on the right side of space.  相似文献   

20.
For human listeners, cues for vertical-plane localization are provided by direction-dependent pinna filtering. This study quantified listeners' weighting of the spectral cues from each ear as a function of stimulus lateral angle, interaural time difference (ITD), and interaural level difference (ILD). Subjects indicated the apparent position of headphone-presented noise bursts synthesized in virtual auditory space. The synthesis filters for the two ears either corresponded to the same location or to two different locations separated vertically by 20 deg. Weighting of each ear's spectral information was determined by a multiple regression between the elevations to which each ear's spectrum corresponded and the vertical component of listeners' responses. The apparent horizontal source location was controlled either by choosing synthesis filters corresponding to locations on or 30 deg left or right of the median plane or by attenuating or delaying the signal at one ear. For broadband stimuli, spectral weighting and apparent lateral angle were determined primarily by ITD. Only for high-pass stimuli were weighting and lateral angle determined primarily by ILD. The results suggest that the weighting of monaural spectral cues and the perceived lateral angle of a sound source depend similarly on ITD, ILD, and stimulus spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号