首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amplitude of the separatrix map and the size of a pendulum chaotic layer are studied numerically and analytically as functions of the adiabaticity parameter at low and medium perturbation frequencies. Good agreement between the theory and numerical experiment is found at low frequencies. In the medium-frequency range, the efficiency of using resonance invariants of separatrix mapping is high. Taken together with the known high-frequency asymptotics, the results obtained in this work reconstruct the chaotic layer pattern throughout the perturbation frequency range.  相似文献   

2.
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2&mgr; (where &mgr; is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior. (c) 2000 American Institute of Physics.  相似文献   

3.
In this work, we analyze the transition from regular to chaotic states in the parametric four-wave interactions. The temporal evolution describing the coupling of two sets of three-waves with quadratic nonlinearity is considered. This system is shown to undergo a chaotic transition via the separatrix chaos scenario, where a soliton-like solution (separatrix) that is found for the integrable (perfect matched) case becomes irregular as a small mismatch is turned on. As the mismatch is increased the separatrix chaotic layer spreads along the phase space, eventually engrossing most part of it. This scenario is typical of low-dimensional Hamiltonian systems.  相似文献   

4.
The paper describes the results of a recent numerical study on the canonical mapping with a sawtooth force. The dynamic effects of the formation of invariant resonance structures of various orders, whose presence prevents the development of global chaos and restricts momentum diffusion in the phase space, are discussed. The dynamic situation near an integer resonance separatrix in the neighborhood of the critical state is studied, and the conditions responsible for the stability of this separatrix in the critical state are determined. Along with the mapping, the related continuous Hamiltonian system is considered. For this system, the separatrix mapping and the Mel’nikov-Arnold integral are introduced, whose analysis facilitates understanding the reasons responsible for the unusual dynamics. This dynamics is shown to be preserved under substantial saw shape changes. Relevant new problems and open questions are formulated.  相似文献   

5.
We show that the onset of global chaos in a time periodically perturbed Hamiltonian system may occur at unusually small magnitudes of perturbation if the unperturbed system possesses more than one separatrix. The relevant scenario is the combination of the overlap in the phase space between resonances of the same order and their overlap in energy with chaotic layers associated with separatrices of the unperturbed system. We develop the asymptotic theory and verify it in simulations.  相似文献   

6.
Conditions whereby the chaotic layer of a nonlinear resonance is described in terms of low-frequency separatrix mapping are discussed. In this case, the accurate estimation of the size of the layer requires the arrangement of resonances at its edge to be known. The resonance picture is constructed using the separatrix mapping invariants of the first three orders. The variation of the layer size with the mapping amplitude is traced with the criterion for resonance overlapping. Results obtained by direct calculation and by invariants analysis are compared. Issues that remain to be solved are noted.  相似文献   

7.
The special role of low-frequency secondary harmonics with frequencies that are sums of and differences between primary frequencies entering into the Hamiltonian in explicit form has been already discussed in the literature. These harmonics are of the second order of smallness and constitute a minor fraction of the disturbance. Nevertheless, under certain conditions, their contribution to the amplitude of the separatrix map of the system may be several orders of magnitude higher than the contributions from primary harmonics and, thereby, govern the formation of dynamic chaos. This work generalizes currently available theoretical and numerical data on this issue. The role of secondary harmonics is demonstrated with a pendulum the disturbance of which in the Hamiltonian is represented by two asymmetric closely spaced high-frequency harmonics. An analytical expression for the contribution of the secondary harmonics to the separatrix map amplitude for this system is derived, and the range of very low secondary frequencies not studied earlier is considered using this equation. The domains where the separatrix map amplitude linearly grows with frequency and the chaotic layer size is frequency-independent are indicated. Theoretical predictions are compared with numerical data.  相似文献   

8.
分子高激发振动态的动力学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郑敦胜  吴国祯 《物理学报》2002,51(10):2229-2232
运用经典哈密顿代数方法,结合单摆的运动特点表示两个化学键之间的振动耦合.对水分子高激发态下两个氧氢键(O—H)伸缩振动动力学的研究结果表明,靠近分界线的中间能级的相空间中较易出现混沌轨道,而较高或较低能级的相空间中则具有比较规则的周期运动 关键词: 高激发振动 共振 混沌  相似文献   

9.
The maximum Lyapunov exponent (referred to the mean half-period of phase libration) of the motion in the chaotic layer of a nonlinear resonance subject to symmetric periodic perturbation, in the limit of infinitely high frequency of the perturbation, has been numerically estimated by two independent methods. The newly derived value of this constant is 0.80, with precision presumably better than 0.01.  相似文献   

10.
We notice that the fundamental frequencies of a slightly perturbed integrable Hamiltonian system are not time-constant inside a resonance but frequency modulated, as is evident from pendulum models and wavelet analysis. Exploiting an intrinsic imprecision inherent to the numerical frequency analysis algorithm itself, hence transforming a drawback into an opportunity, we define the Frequency Modulation Indicator, a very sensitive tool in detecting where fundamental frequencies are modulated, localizing so the resonances without having to resort, as in other methods, to the integration of variational equations. For the Kepler problem, the space of the orbits with a fixed energy has the topology of the product of two 2-spheres. The perturbation Hamiltonian, averaged over the mean anomaly, has surely a maximum and a minimum, to which correspond two periodic orbits in physical space. Studying the neighbourhood of these two elliptic stable points, we are able to define adapted action-angle variables, for example, the usual but “SO(4)-rotated” Delaunay variables. The procedure, implemented in the program KEPLER, is performed transparently for the user, providing a general scheme suited for generic perturbation. The method is then applied to the Stark-Quadratic-Zeeman problem, displaying very clearly the Arnold web of the resonances. Sectioning transversely one of the resonance strips so highlighted and performing a numerical frequency analysis, one is able to locate with great precision the thin stochastic layer surrounding a separatrix. Another very long (108 revolutions) frequency analysis on an orbit starting here reveals, as expected, a well defined pattern, which ensures that the integration errors do not eject the point out of the layer, and moreover a very slow drift in the frequency values, clearly due to Arnold diffusion.  相似文献   

11.
A parabolic resonance is formed when an integrable two-degrees-of-freedom (d.o.f.) Hamiltonian system possessing a circle of parabolic fixed points is perturbed. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, two d.o.f. Hamiltonian systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits a new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a flat parabolic resonance, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with small (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed. (c) 1997 American Institute of Physics.  相似文献   

12.
Hamiltonian systems are analyzed with a double homoclinic orbit connecting a saddle to itself. Competing centers exist. A small dissipative perturbation causes the stable and unstable manifolds of the saddle point to break apart. The stable manifolds of the saddle point are the boundaries of the basin of attraction for the competing attractors. With small dissipation, the boundaries of the basins of attraction are known to be tightly wound and spiral-like. Small changes in the initial condition can alter the equilibrium to which the solution is attracted. Near the unperturbed homoclinic orbit, the boundary of the basin of attraction consists of a large sequence of nearly homoclinic orbits surrounded by close approaches to the saddle point. The slow passage through an unperturbed homoclinic orbit (separatrix) is determined by the change in the value of the Hamiltonian from one saddle approach to the next. The probability of capture can be asymptotically approximated using this change in the Hamiltonian. The well-known leading-order change of the Hamiltonian from one saddle approach to the next is due to the effect of the perturbation on the homoclinic orbit. A logarithmic correction to this change of the Hamiltonian is shown to be due to the effect of the perturbation on the saddle point itself. It is shown that the probability of capture can be significantly altered from the well-known leading-order probability for Hamiltonian systems with double homoclinic orbits of the twisted type, an example of which is the Hamiltonian system corresponding to primary resonance. Numerical integration of the perturbed Hamiltonian system is used to verify the accuracy of the analytic formulas for the change in the Hamiltonian from one saddle approach to the next. (c) 1995 American Institute of Physics.  相似文献   

13.
Evidence is given that many classes of periodically kicked Hamiltonian system with 1.5 degree of freedom generate infinite, uniform stochastic webs. The kick term in the Hamiltonian or the equation of motion need not be purely sinusoidal or some small perturbation of a sinusoidal function. For the resonance condition q=4 the structure of the web can be different from a square lattice; However, remarkably symmetric patterns of chaos are still present throughout the whole phase space. Examples are given for the square wave function and sawtooth function in the kick term of the equation of motion. The sensitive dependence on initial conditions of those systems is investigated.  相似文献   

14.
15.
A method of controlling global stochasticity in Hamiltonian systems by applying nonlinear perturbation is proposed. With the well-known standard map we demonstrate that this control method can convert global stochasticity into regular motion in a wide chaotic region for arbitrary initial condition, in which the control signal remains very weak after a few kicks. The system in which chaos has been controlled approximates to the original Hamiltonian system, and this approach appears robust against small external noise. The mechanism underlying this high control efficiency is intuitively explained. Received 15 January 2002 Published online 6 June 2002  相似文献   

16.
Numerical experiments on the structure of the chaotic component of motion under multiple-crossing of the separatrix of a nonlinear resonance with a time-varying amplitude are described with the emphasis on the ergodicity problem. The results clearly demonstrate nonergodicity of this motion due to the presence of a regular component of a relatively small measure with a very complicated structure. A simple 2D-map per crossing is constructed that qualitatively describes the main properties of both chaotic and regular components of the motion. An empirical relation for the correlation-affected diffusion rate is found including a close vicinity of the chaos border where evidence of the critical structure is observed. Some unsolved problems and open questions are also discussed.  相似文献   

17.
We consider a simple model of the lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of the atom is governed by the laser field, which is treated as classical with a large number of photons. The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degrees of freedom. The resulting Hamilton-Schrö dinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch vector length are conserved during the interaction. In our previous papers, the motion of the atom has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of the initial conditions and/or the system’s control parameters) depending on the values of the control parameters, atom-field detuning, and recoil frequency. At the exact atom-field resonance, the exact solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position in the optical lattice. We study analytically the correlations between the Rabi oscillations and the center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated atomic motion-Poincaré mapping of atomic trajectories in an effective three-dimensional phase space onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using the translational invariance of the standing laser wave. We find common features with typical nonhyperbolic Hamiltonian systems-chains of resonant islands of different sizes imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking to boundaries of regular islands, which should have a great influence on atomic transport in optical lattices, is found and demonstrated numerically.  相似文献   

18.
A mechanism of emergence of Hamiltonian chaos is considered for the model describing the interaction between two-level atoms and their own radiation field in an ideal single-mode cavity. The analysis of the semiclassical Maxwell-Bloch equations shows that the Hamiltonian terms that are neglected in the rotating-wave approximation (RWA) give rise to the formation of a stochastic layer near the RWA-system separatrix. The Mel’nikov method is used to prove that the splitting of the separatrix takes place for arbitrarily small vacuum Rabi frequencies ΩN. The computation of Poincare sections shows that the stochastic layer, which is exponentially narrow for small Ω N, expands with increasing ΩN, and at ΩN ? 1, the system exhibits global chaos that manifests itself in irregular oscillation of the atomic population inversion and the broadening of the power spectrum. Promising candidates for observing manifestations of dynamic chaos in this basic quantum-optical system are Rydberg atoms placed in a high-Q superconducting microwave cavity.  相似文献   

19.
We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators.  相似文献   

20.
高频电压调制对同步运动的影响   总被引:2,自引:0,他引:2  
从系统的扰动Hamiltonian出发, 在经典力学框架内小振幅近似下, 把粒子的纵向运动方程化为Mathieu方程, 指出了由于扰动的存在, 准等时同步加速器出现了一系列新的共振线。用摄动法导出了一阶不稳定区的边界曲线和禁带宽度; 指出了当粒子穿越禁带后的振幅与同步加速器的两个不稳定点相位相等时, 系统处于临界状态; 并由此导出了高频电压调制振幅的临界值。In the classical mechanics frame and small amplitude approximation, the longitudinal motion equation of the particle was reduced to the Mathieu equation based on the perturbed Hamiltonian. It was pointed out that there is a series of new resonance lines in quasi isochronous synchrotron by the perturbation. The boundary curve and the stop width for order instability zone one were derived by the method of perturbabtion. Also it was pointed that the system is at the critical point when the phase becomes equal to the phase of the instable point for the synchrotron after it crossed the stop band, and the critical condition of the high frequency voltage modulation was derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号