首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The high pressure structural, elastic and thermal properties of holmium pnictides HoX (X=N, P, As and Bi) were investigated theoretically by using an inter-ionic potential theory with modified ionic charge parameter. We have predicted a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at pressure of 139 GPa for HoN, 52 GPa for HoP, 44 GPa for HoAs and 26 GPa for HoBi. Other properties, such as lattice constant, bulk modulus, cohesive energy, second and third-order elastic constants were calculated and compared with the available experimental and theoretical data. In order to gain further information the brittle behaviour of these compounds was observed. Some other properties like Shear modulus (G), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), sound velocities, Debye temperature (θD) were calculated. The variation of elastic constants (C11 and C44) and Debye temperature (θD) with pressure was also presented.  相似文献   

2.
The mechanical, thermodynamical and elastic properties of Hg0.91Mn0.09Te compound are calculated by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb, three body force parameter, the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure have revealed reasonably good agreement with the available experimental data on the phase transition pressure P t = 11.5 GPa and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1) structure. Later on, the Poisson’s ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson’s ratio and the ratio R S/B it is inferred that Hg0.91Mn0.09Te is brittle in nature in both B3 phase and B1 phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg0.91Mn0.09Te compounds and still awaits experimental confirmations.  相似文献   

3.
The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature.  相似文献   

4.
In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress–strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt–Reuss–Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.  相似文献   

5.
We have used special quasirandom structure to study the structural, electronic, elastic and mechanical properties of RuAl1−xGax alloys for different compositions (x=0, 0.25, 0.50, 0.75 and 1) using a FP-LAPW method based on Density Functional Theory. The exchange and correlation potential is treated within the generalized gradient approximation. Ground state properties such as lattice constant (a0), bulk modulus (B), its pressure derivative (B′) and elastic constants are calculated. The ductility of these alloys has been analyzed by calculating the ratio of B/GH, Cauchy pressure (C12C44) and Frantsevich rule. From this study RuAl and RuGa are found to be brittle, but their alloys show ductile behavior; RuAl0.50Ga0.50 is found to be most ductile. Mechanical properties such as Poisson's ratio (σ), Young's moduli (E), and the ratio of elastic anisotropy factor (A) are estimated. We have also correlated the ductility and bonding behavior of these alloys.  相似文献   

6.
张品亮  龚自正*  姬广富  刘崧 《物理学报》2013,62(4):46202-046202
基于密度泛函理论的第一性原理计算获得了α-Ti2Zr的晶体结构、弹性常数、德拜温度和电子分布情况, 研究了它们与压力的关系. 计算得到的晶体结构参数与实验值一致. 运用有限应变方法计算得到了α-Ti2Zr的体积模量B、剪切模量G、杨氏模量E和泊松比σ. BE的零压值分别为101.2和35.6 GPa. G/B的值较小, 并且随着压力的增加而减小, 表明α-Ti2Zr具有优异的延展性. 基于弹性常数得到平均声速, 从而获得了德拜温度Θ=321.7 K. 通过解Christoffel方程获得的压缩波和剪切波数据揭示α-Ti2Zr具有较强的各向异性. 此外, 压力诱导电子从s轨道到d轨道的转移说明在一定压力下α-Ti2Zr将转变为β相. 关键词: 第一性原理 α-Ti2Zr')" href="#">α-Ti2Zr 物性 高压  相似文献   

7.
The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young?s modulus E and Poisson?s ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.  相似文献   

8.
We have theoretically investigated the elastic properties of calcite-type orthoborates ABO3 (A=Sc and In) at high pressure by means of ab initio total-energy calculations. From the elastic stiffness coefficients, we have obtained the elastic moduli (B, G and E), Poisson's ratio (ν), B/G ratio, universal elastic anisotropy index (AU), Vickers hardness, and sound wave velocities for both orthoborates. Our simulations show that both borates are more resistive to volume compression than to shear deformation (B>G). Both compounds are ductile and become more ductile, with an increasing elastic anisotropy, as pressure increases. We have also calculated some thermodynamic properties, like Debye temperature and minimum thermal conductivity. Finally, we have evaluated the theoretical mechanical stability of both borates at high hydrostatic pressures. It has been found that the calcite-type structure of InBO3 and ScBO3 becomes mechanically unstable at pressures beyond 56.2 and 57.7 GPa, respectively.  相似文献   

9.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

10.
New ternary magnesium alloys AMgNi4 (A=Y, La, Ce, Pr and Nd) have been studied by First-Principles calculations within the generalized gradient approximation. The optimized structural parameters were in good agreement with the available experimental data. The calculated cohesive energies and formation enthalpies showed that these alloys had strong structural stability. Then the elastic constants Cij of these AMgNi4 alloys were calculated, and the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A of polycrystalline materials were derived from the elastic constants, the related mechanical properties were further discussed. The electronic structures were also calculated to reveal the underlying mechanism for the structural stability and the elastic property.  相似文献   

11.
The structural, elastic and electronic properties of Ti2SiN were studied by first-principle calculations. The calculated bond lengths of Ti-Si and Ti-C are 2.65 and 2.09 Å, respectively. The results show Ti2SiN is mechanically stable, and its bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio μ and anisotropy factor A are determined to be 182 GPa, 118 GPa, 291 GPa, 0.233 and 1.57, respectively. The calculated electronic structure indicates that Ti2SiN is anisotropic and conductive.  相似文献   

12.
The elastic and thermal properties of Sr1?xYxCoO3 (0 ≤ x ≤ 0.5) have been investigated, probably for the first time, by using modified rigid ion model. We present the elastic constants (C11, C12, C44) and other elastic properties like bulk modulus (B), Young's modulus (Y), shear modulus (G), Poisson's ratio (σ), Lame's parameter (μ, λ), transverse, longitudinal and average wave velocity (υt, υl and υm) and anisotropy parameter (A). Besides, we have reported the thermodynamic properties molecular force constant (f), Reststrahlen frequency (υ), cohesive energy (φ), Debye temperature (θD) and Gruneisen parameter (γ). We have also computed the variation of specific heat (C) and volume thermal expansion coefficient (α). The computed results on the elastic and thermodynamic properties are the first report on them. This model is capable of explaining the Cauchy's discrepancy, elastic and thermal properties successfully.  相似文献   

13.
The structural, elastic and electronic properties of Al2La, AlLa3 and Al3La binary intermetallics in the Al–La alloy system were investigated using the first-principles method. The calculated lattice constants were consistent with the experimental values. Formation enthalpy and cohesive energy showed that the studied Al2La, AlLa3 and Al3La all have a higher structural stability, and the alloying ability of Al2La and Al3La is stronger than that of AlLa3. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated by the Voigt–Reuss–Hill (V–R–H) approximations, and the relationship of these elastic parameters between Al2La, AlLa3 and Al3La phases were discussed in detail. The results showed that Al2La and Al3La which are anisotropic materials are absolutely brittle, while the isotropic AlLa3 is slightly ductile. Finally, the electronic density of states (DOS) was also calculated to reveal the underlying mechanism of structural stability.  相似文献   

14.
Structural, elastic and electronic properties of strontium chalcogenides SrX (X = O, S and Se) in the B1 (NaCl) and B2 (CsCl) phases were investigated in the present work. The calculations were performed using density functional theory (DFT) within generalized gradient approximation (GGA) using scalar relativistic Vanderbilt-type ultrasoft pseudopotentials. Results for structural properties of both phases, the pressure at which transition from B1 to B2 phase occurs and the volume compression ratio for each compound were reported. Elastic properties of the B1 phase of these compounds, such as elastic constants C11, C12, and C44, shear modulus (G), Young's modulus (E), Poisson's ratio (σ), Kleinman parameter (ξ), and anisotropy factor (A) were also calculated at ambient conditions. The band gaps and density of states were studied too for the B1 structure of these compounds. The present results were compared with the available experimental and other theoretical results, and found to be in satisfactory agreement with them.  相似文献   

15.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

16.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

17.
The lattice constants, elastic properties, electronic structure and thermodynamic properties of Al3Nb with DO22 structure have been investigated by the first-principles calculation. The calculated lattice constants were consistent with the experimental values, and the structural stability was also studied from the energetic point of view. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated, and brittleness of Al3Nb was discussed in detail. Besides, the electronic structure of tetragonal Al3Nb was studied, which indicates a mixture of metallic bond and covalent bond in Al3Nb and reveals the underlying mechanism of the stability and elastic properties of Al3Nb. Finally, the thermodynamic properties of Al3Nb were calculated and the physical properties such as heat capacity and Debye temperature were predicted within the quasi-harmonic approximation.  相似文献   

18.
19.
In this paper, we study the structural, electronic and elastic properties of the ternary AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds using the full-potential linearized augmented plane wave (FP-LAPW) scheme and the pseudopotential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). Results are given for the lattice parameters, bulk modulus, and its pressure derivative. The calculated lattice parameters are in good agreement with experimental results. We have determined the full set of first-order elastic constants, shear modulus, Young's modulus and Poisson's ratio of these compounds. Also, we have presented the results of the band structure, densities of states, it is found that this compounds metallic behavior, and a negative gap Г→R for Pr3AlC. The analysis charge densities show that bonding is of covalent–ionic and ionic nature for AgSbSe2 and AgSbTe2 compounds.  相似文献   

20.
A theoretical study of the elastic properties in diluted magnetic semiconductors Hg1−xMnxS (x=0.02 and 0.07) using an effective interionic interaction potential (EIoIP) in which long-range Coulomb interactions, charge transfer mechanism (three body interaction) and the Hafemeister and Flygare type short-range overlap repulsion extending up to the second neighbor ions and the van der Waals (vdW) interaction is considered. Particular attention is devoted to evaluate Poisson's ratio ν, the ratio RS/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and thermodynamic property as Debye temperature is calculated. By analyzing Poisson's ratio ν and the ratio RS/B we conclude that Hg1−xMnxS is brittle in zinc blende (B3). To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg1−xMnxS compounds and still awaits experimental confirmations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号