首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorbed species on bare Pt, and UPD-Pb or UPD-Cu/Pt electrodes were characterized in HClO4 or H2SO4 solutions at various potentials using attenuated total reflection (ATR)–surface enhanced infrared absorption (SEIRA) spectroscopy. On the bare Pt electrode, anions were observed at 1120–1095 cm−1 at +0.0 < E < +0.6 V, solvated by water molecules with OH stretching absorption at 3600 cm−1 and HOH bending mode at 1610–1620 cm−1. In addition to the S–OH totally symmetric mode at 950 cm−1, adsorbed sulfate species gave two bands at 1230–1100 cm−1 between 0.0 V < E < +0.8 V that are assigned to ν3 (symmetric stretch of S–O in SO3) of ions with different coordination based on the peak shift by isotope substitution. At more negative potential, solely water molecules adsorb on the bare Pt surfaces. In contrast, it was found that electrolyte anions such as bisulfate and with hydrating water molecules adsorb onto the UPD-Pb/Pt and UPD-Cu/Pt electrodes even at much negative potentials, e.g. −0.2 V for UPD-Pb.  相似文献   

2.
Far-infrared and millimeter wave spectra of copper ion conducting crystal RbCu4Cl3+xI2−x, which has the same structure as the room temperature silver ion conductor RbAg4I5, were investigated. Broad absorption peaks observed around 40, 80, and 110–200 cm−1 at room temperature show doublet structures at low temperature; this may be attributed to the difference of local structure by chlorine and iodine ion. The 110–200 cm−1 bands seem to be symmetric breathing modes of CuX4 (X = Cl or I) tetrahedron and the frequency shift coincides with the square root of the mass ratio of conduction ions. The 80 cm−1 band seems to be Rb-X vibration in RbX6 octahedron. The 40 cm−1 band seems to be the attempt mode which is an outward motion of the mobile ion in halogen cage. The increase of the absorption intensity at the low energy side with temperature corresponds to an increase of the DC conductivity. Plasmon fitting in energy loss function spectra was attempted.  相似文献   

3.
The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides, Raman spectra of compacted samples recorded with both 1064 and 488 nm excitation show additional bands in comparison with original monoclinic zirconia. The bands in the region 540–730 nm with 488 nm excitation are ascribed to electronic transitions of Sm3+ ions. The nature of the extra bands in the 3000–1830 cm−1 region observed with 1064 nm excitation is unknown. Their intensity depends on the concentration of defects, but these bands are still observed for a sample containing no paramagnetic defects. In contrast to uncompacted zirconia, the EPR spectrum of the dynamically compacted material shows defects, most likely related to VO (oxygen vacancies), which might be an indication for ionic conduction. As monoclinic zirconia is not an ionic conductor, it could be that shock-compaction introduces sample conductivity, e.g. ionic conduction, which can be important for the development of new applications such as batteries.  相似文献   

4.
We have used the ab initio cluster model approach to study the dependence of the CO stretching frequency on CO surface coverage. We have also investigated the relative importance of the various factors that can affect the position of the CO stretching band as coverage increases. Two effects can change the CO stretching frequency: the adsorbate–adsorbate dipole coupling, which is a purely physical effect, and the changes in the 2π* CO molecular orbitals, due to the different chemical environment at higher coverages. From our vibrational analysis, we conclude that CO–CO dipole coupling is the main cause of the upward shift of the CO stretching band when the CO coverage is increased. The population of the 2π* CO molecular orbitals does not change at any coverage within the region considered. We have also estimated the 12CO–13CO dipole coupling, which previous studies have assumed to be weak. Our results demonstrate that the 12CO–13CO dipole coupling is indeed weak compared with the 12CO–12CO dipole coupling. At a CO surface coverage of 0.5 monolayers (ML), we have calculated a band shift of 40 cm−1 to higher frequency. However, we should point out that when one 12CO molecule is surrounded by a 13CO environment, the 12CO stretching band shifts 10 cm−1 upwards. We have also computed the heat of adsorption of CO on Pt{100}-(1×1) as a function of CO coverage. The initial heat of adsorption is calculated to be about 192 kJ mol−1 and then drops to 180 kJ mol−1 at 0.5 ML. These results agree quite well with recent calorimetric measurements. Besides that, we have estimated that the CO–CO interaction energy at 0.5 ML is repulsive and has a value of 5 kJ mol−1.  相似文献   

5.
Sonolytic degradation of hazardous organic compounds in aqueous solution   总被引:16,自引:0,他引:16  
Benzene, chlorobenzene, 1,2-, 1,3-, 1,4-dichlorobenzene, biphenyl, and polychlorinated biphenyls such as 2-, 4-chlorobiphenyl and 2,2′-dichlorobiphenyl in aqueous solutions have been subjected to sonolysis with 200 kHz ultrasound at an intensity of 6 W cm−2 under an argon atmosphere. 80–90% of initial amount of these compounds were degraded by 30–60 min of sonication when the initial concentrations were 10–100 μmol l−1. The degradation rate of these compounds increased with increase in their vapor pressures. In all cases of sonolysis of chlorinated organic compounds, an appreciable amount of liberated chloride ion was observed.  相似文献   

6.
The FTIR spectroscopy of carbon monoxide adsorbed on polycrystalline MgO smoke has been investigated as a function of the CO equilibrium pressure at constant temperature (60 K) (optical isotherm) and of the temperature (in the 300–60 K range) at constant CO pressure (optical isobar). In both cases the spectra fully reproduce those of CO adsorbed on the (0 0 1) surface of UHV cleaved single crystals [Heidberg et al., Surf. Sci. 331–333 (1995) 1467]. This result, never attained in previous investigations on dispersed MgO, contribute to bridging the gap which is commonly supposed to exist between surface science and the study of “real” (defective) systems. Depending on the surface coverage θ the main spectral features due to the CO/MgO smoke interaction are a single band shifting from 2157.5 (at θ→0) to 2150.2 cm−1 (at θ=1/4) or a triplet, at 2151.5, 2137.2 and 2132.4 cm−1 (at θ>1/4). These manifestations are due to the ν(CO) modes of Mg5C2+· · · CO adducts formed on the (0 0 1) terminations of the cubic MgO smoke microcrystals. The formation of the CO monolayer is occurring in two different phases: (i) a first phase with CO oscillators perpendicularly oriented to the surface (2157–2150 cm−1) and (ii) a second phase constituted by an array of coexisting perpendicular and tilted species (triplet at 2151.5, 2137.2 and 2132.4 cm−1). A much weaker feature at 2167.5–2164 cm−1 is assigned to Mg4C2+· · · CO adducts at the edges of the microcrystals. The heat of adsorption of the perpendicular Mg5C2+· · · CO complex in the first phase has been estimated from the optical isobar and results to be 11 kJ mol−1.  相似文献   

7.
Two issues relevant to the growth and processing of GaN are the termination of the GaN(0001) surface and its reaction with hydrogen. We have used high-resolution electron energy loss spectroscopy (HREELS), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES) to study the adsorption of hydrogen on MOCVD-grown GaN(0001). LEED of the sputtered and annealed surface shows evidence of facetting. No adsorbate vibrations are observed on the clean surface by HREELS, only Fuchs–Kliewer phonons at intervals of 700 cm−1. Following exposure of the clean GaN surface to hydrogen atoms, HREEL spectra show adsorbate loss peaks at 2580, 3280, and 3980 cm−1. The Ga–H stretching vibration at 1880 cm−1 becomes evident when the HREEL spectrum is deconvoluted to remove the phonon multiple-loss peaks. We assign the 2580, 3280, and 3980 cm−1 peaks to combination modes of the Ga–H stretch and phonon(s). Upon dosing with deuterium, the Ga–D bending mode is observed at 400 cm−1. No vibrational peaks due to N–H (N–D) species are observed after H (D) exposure. We conclude that sputtered and annealed GaN(0001) is Ga-terminated.  相似文献   

8.
The absolute values of the oscillator strength ƒ were measured for the six spectral lines of Gd by means of laser absorption spectroscopy with the atomic vapor produced by electron beam heating. The ƒ values obtained for the transition are 0–17381 cm−1, 215–17750 cm−1, 533–17795 cm−1, 999–18070 cm−1, 999–17931 cm−1, 1719–18070 cm−1 were obtained to be 0.0036, 0.012, 0.014, 0.019, 0.0075 and 0.039, respectively. The error of ƒ values was 24% due to uncertainty of metastable states' density.  相似文献   

9.
The molecular adsorption of NO on both the reconstructed (hex) and unreconstructed (1 × 1) surfaces of Pt{100} has been studied using a combination of infrared reflection-absorption spectroscopy (IRAS) and low energy electron diffraction (LEED) at temperatures between 90 and 300 K. On the (1 × 1) surface at 300 K adsorbed NO gives rise to an N-O stretching band at initially 1596 cm−1 shifting to 1641 cm−1 at a coverage of θ = 0.5. The LEED pattern at this coverage is interpreted in terms of a c(4 × 2) structure in which all the molecules occupy a single type of adsorption site between the on-top and bridge positions. At temperatures below 300 K, a higher coverage disordered phase is observed, giving rise to an N-O stretching band at 1680 cm−1 associated with an on-top NO species. On the (hex) phase surface above 210 K, NO adsorption gives rise to bands characteristic of adsorption on the (1 × 1) phase indicating that the reconstruction is immediately lifted. Below 200 K initial adsorption actually occurs directly on the (hex) phase, resulting in a band at 1680 cm−1, which is assigned to on-top NO. This band increases in intensity until, at a critical coverage dependent on temperature, the (hex) → (1 × 1) surface phase transition is induced. This is indicated by the disappearance of the band at 1680 cm−1 and its replacement by bands characteristic of adsorption on islands of the (1 × 1) structure.  相似文献   

10.
The aggregation of the copper (II) 4,4′,4′′,4′′′-tetrasulfonated phthalocyanine anion (Cu(tsPc)−4) has been studied in aqueous solutions, DMSO and in human blood by UV–VIS absorption spectroscopy and resonance Raman spectroscopy (RRS). The vibrational mode ν4 (1530 cm−1) has been used as a probe in RRS. It has been shown that the dimerization equilibrium constant K is shifted significantly towards monomeric forms when human blood is added to the solution. The life-time of the singlet excited state Sn of (Cu(tsPc)−4) in aqueous solution has been estimated to be shorter than 500 fs using femtosecond pump-probe absorption spectroscopy.  相似文献   

11.
Novel hyperbranched polymer, poly[bis(diethylene glycol)benzoate] capped with a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group (poly-Bz1a), was prepared, and its polymer electrolyte with LiN(CF3SO2)2, poly-Bz1a/LiN(CF3SO2)2 electrolyte, was all evaluated in thermal properties, ionic conductivity, and electrochemical stability window. The poly-Bz1a/LiN(CF3SO2)2 electrolyte exhibited higher ionic conductivity compared with a polymer electrolyte based on poly[bis(diethylene glycol)benzoate] capped with an acetyl group (poly-Ac1a), and the ionic conductivity of poly-Bz1a/LiN(CF3SO2)2 electrolyte was to be 7×10−4 S cm−1 at 80 °C and 1×10−6 S cm−1 at 30 °C, respectively. The existence of a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group as a branching unit present at ends in the base polymer improved significantly ionic conductivity of the hyperbranched polymer electrolytes. The polymer electrolyte exhibited the electrochemical stability window of 4.2 V at 70 °C and was stable until 300 °C.  相似文献   

12.
The behavior of luminescence spectra and structural defects in single crystal Czochralski silicon after erbium implantation at 1–1.8 MeV energies and 1×1013 cm−2 dose with subsequent annealing at 1000–1200°C for 0.25–3 h in argon and a chlorine-containing ambience (CCA) was studied by photoluminescence (PL), transmission electron microscopy and chemical etching/Nomarski microscopy. We have found that annealing in CCA gives rise to dislocation loops and pure edge dislocations with dominant dislocation-related lines in the PL spectrum. Pure edge dislocations are responsible for the appearance of the lines.  相似文献   

13.
The theoretical mechanisms for the decays ψ′ → ψπ0 and ψ′ → ψη, which violate SU2 and SU3, respectively discussed. It is argued that symmetry breaking in the decay amplitudes may be as important as π0 −η −η′ mixing. The π0 −η mechanism ψ′ → ψν → ψπ0 leads to Γ(ψ′ → ψπ0) = (3.3±1.0) × 10−3 Γ(ψ′ → ψν), but this number may be enhanced by a factor as large as 12 by π0−η′ mixing and isospin violation in the decay amplitude. The related decays ψ → ηγ and ψ → η′γ are also discussed.  相似文献   

14.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

15.
The vibrational spectrum of water dissociatively adsorbed on Si(100) surfaces is obtained with surface infrared absorption spectroscopy. Low frequency spectra (< 1450 cm−1 are acquired using a buried CoSi2 layer as an internal mirror to perform external reflection spectroscopy. On clean Si(100), water dissociates into H and OH surface species as evidenced by EELS results [1] in the literature which show a Si---H stretching vibration (2082 cm−1), and SiO---H vibrations (O---H stretch at 3660 cm−1 and the Si---O---H bend and Si---O stretch of the hydroxyl group centered around 820 cm−1). In this paper, infrared (IR) measurements are presented which confirm and resolve the issue of a puzzling isotopic shift for the Si---O mode of the surface hydroxyl group, namely, that the Si---O stretch of the O---H surface species formed upon H2O exposure occurs at 825 cm−1, while the Si---O stretch of the ---OD surface species formed upon D2O exposure shifts to 840 cm−1, contrary to what is expected for simple reduced mass arguments. The higher resolution of IR measurements versus typical EELS measurements makes it possible to identify a new mode at 898 cm−1, which is an important piece of evidence in understanding the anomalous frequency shift. By comparing the results of measurements for adsorption of H162O, H182O and D2O with the results from recently performed first-principles calculations, it can be shown that a strong vibrational interaction between the Si---O stretching and Si---O---H bending functional group vibrations of the hydroxyl group accounts for the observed isotopic shifts.  相似文献   

16.
The interaction of 180 fs, 775 nm laser pulses with aluminium under a flowing stream of helium at ambient pressure have been used to study the material re-deposition, ablation rate and residual surface roughness. Threshold fluence Fth0.4 J cm−2 and the volume ablation rate was measured to be 30<V<450 μm3 per pulse in the fluence range 1.4<F<21 J cm−2. The presence of helium avoids gas breakdown above the substrate and leads to improved surface micro-structure by minimising surface oxidation and debris re-deposition. At 1 kHz rep. rate, with fluence F>7 J cm−2 and >85 W cm−2 average power density, residual thermal effects result in melt and debris formation producing poor surface micro-structure. On the contrary, surface micro-machining at low fluence F1.4 J cm−2 with low power density, 3 W cm−2 produces much superior surface micro-structuring with minimum melt and measured surface roughness Ra1.1±0.1 μm at a depth D50 μm. By varying the combination of fluence/scan speed during ultra-fast ablation of aluminium at 1 kHz rep. rate, results suggest that maintaining average scanned power density to <5 W cm−2 combined with single pulse fluence <4 J cm−2 produces near optimum micro-structuring. The debris under these conditions contains pure aluminium nanoparticles carried with the helium stream.  相似文献   

17.
The adsorption reactions and binding configurations of cyclohexene, 1,3-cyclohexadiene and 1,4-cyclohexadiene on Si(1 1 1)-7 × 7 were studied using high-resolution electron energy loss spectroscopy (HREELS), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and DFT calculation. The covalent attachments of these unsaturated hydrocarbons to Si(1 1 1)-7 × 7 through the formation of Si–C linkages are clearly demonstrated by the observation of the Si–C stretching mode at 450–500 cm−1 in their HREELS spectra. For chemisorbed cyclohexene, the involvement of πC=C in binding is further supported by the absence of C=C stretching modes and the disappearance of the πC=C photoemission. The chemisorption of both 1,3-cyclohexadiene and 1,4-cyclohexadiene leads to the formation of cyclohexene-like intermediates through di-σ bonding. The existence of one πC=C bond in their chemisorbed states is confirmed by the observation of the C=C and (sp2)C---H stretching modes and the UPS and XPS results. DFT calculations show that [4 + 2]-like cycloaddition is thermodynamically preferred for 1,3-cyclohexadiene on Si(1 1 1)-7 × 7, but a [2 + 2]-like reaction mechanism is proposed for the covalent attachment of cyclohexene and 1,4-cyclohexadiene.  相似文献   

18.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

19.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

20.
The adsorption of NO on single gold atoms and Au2 dimers deposited on regular O2− sites and neutral oxygen vacancies (Fs sites) of the MgO(1 0 0) surface have been studied by means of DFT calculations. For Au1/MgO the adsorption of NO is stronger when the Au atom is supported on an anionic site than when it is on a Fs site, with adsorption binding energies of 1.1 and 0.5 eV, respectively. In the first case the spin density is mainly concentrated on the metal atom and protruding from the surface. In such a way, an active site against radicals such as NO is generated. On the Fs site, the presence of the vacancy delocalizes the spin into the substrate, weakening its coupling with NO. For Au2/MgO, as this system has a closed-shell configuration, the NO molecules bonds weakly with Au2. Regarding the N–O stretching frequencies, a very strong shift of 340–400 cm−1 to lower frequencies is observed for Au1/MgO in comparison with free NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号