首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 259 毫秒
1.
采用标量概率密度函数(PDF)方法、稳态和非稳态火焰面模型三种方法对一个值班湍流CH_4/O_2/N_2射流扩散火焰(Sandia Flame D)进行数值计算,以比较不同燃烧模型的性能。PDF方法通过计算反应标量的PDF输运方程来得到标量分布,而火焰面模型只求解单标量混合物分数的PDF方程,组分和温度分布通过火焰面方程的求解或者火焰面数据库的插值得到。计算结果和实验数据对比表明PDF方法计算结果最好但计算量相当大,稳态火焰面模型则反之。综合而言,非稳态火焰面模型的预测结果相对稳态模型有了非常大的改进,而计算量仍然容易接受,非常适合工程应用。  相似文献   

2.
抬举湍流H2/N2射流火焰的PDF模拟   总被引:2,自引:0,他引:2  
采用数值目的研究了一个高温燃烧产物环境中的抬举湍流H2/N2射流火焰,对火焰的自然和抬举特性进行了研究.采用标量联合概率密度函数(PDF)目的处理详细的化学动力学过程,而湍流流场采用一个多时间尺度(MTS)k-ε湍流模型计算.计算中结合了一套描述氢气氧化的详细化学反应动力学机理.计算结果和实验数据进行了对比,表明所采用的模型可以精确的模拟火焰抬举高度和自然的过程.  相似文献   

3.
采用稳态的和非稳态的火焰面模型同时对一个湍流甲烷射流扩散火焰进行了数值模拟,比较了两者对湍流平均火焰结构、活性自由基和污染物(氮氧化物)排放的模拟效果。速度场采用κ-ε模型计算,守恒标量混合物分数的分布通过其概率密度函数(PDF)输运方程的求解得到。稳态的火焰面结构由查询火焰面数据库得到,而非稳态的火焰面结构由火焰面方程和流场方程耦合求解来计算。采用详细的GRI—Mech 3.0机理描述甲烷的氧化和氮氧化物的形成。数值模拟结果和实验数据作了广泛的对比,验证了火焰面模型对湍流扩散燃烧的定量模拟能力。  相似文献   

4.
分别采用标量联合的概率密度函数方法、稳态火焰面模型、Euler非稳态火焰面模型和基于有限体积/Monte Carlo混合算法的完备PDF模型对钝体驻定的Sydney湍流扩散火焰HM1进行数值模拟,以比较不同燃烧模型的性能,并比较标量联合的概率密度函数方法和Euler非稳态火焰面模型对氮氧化物排放预测的差异.计算结果和实验数据的比较表明,采用概率密度函数方法计算化学反应可以得到更好的结果但计算量较大,而用火焰面模型求解计算量较小,在接近完全燃烧的情形下,其计算结果比较合理.  相似文献   

5.
PDF方法模拟钝体驻定的湍流扩散火焰   总被引:2,自引:0,他引:2  
采用标量联合的概率密度函数方法,对钝体驻定的湍流射流扩散Sydney火焰HM1进行数值模拟,结合当地自适应建表方法加速化学反应计算,用修正的LRR-IP雷诺应力模型求解速度场.首次对3种不同规模的甲烷化学反应动力学机理进行研究,并与实验数据进行比较,结果表明,模型和反应机理很好地预测了速度场和标量场的变化及局部熄火现象,而考虑反应机理中的C2化学对火焰HM1的影响不大.  相似文献   

6.
受限湍流射流扩散火焰的PDF模拟   总被引:3,自引:0,他引:3  
采用k-ε双方程模型和概率密度函数(PDF)相结合的办法,研究受限条件下的湍流射流扩散火焰,着重考虑受限条件下固体壁面、压力梯度等因素对速度场和标量场求解的影响,并在此基础上对两个不同尺寸的受限湍流燃烧场进行计算,分别研究了受限湍流射流扩散火焰的流场结构、火焰结构和火焰形状.最后给出结果,定性分析,并得出结论.  相似文献   

7.
本文采用作者提出的带标量修正的代数各向异性湍流模型,对平板带复合角气膜冷却在带横槽/不带横槽情况下的流动传热进行了研究.通过比较不同工况下的流动传热预测结果,讨论了湍流动量、标量输运对于气膜冷却预测的影响.各向异性修正的雷诺应力项能减弱各向同性湍流模型所带来的肾形涡系强度过预测的问题。而各向异性的湍流标量扩散项则能有效地将雷诺应力和温度梯度对于湍流标量扩散系数的影响体现出来。结果表明带标量修正的各向异性湍流模型能很好地提高气膜冷却的预测精度.  相似文献   

8.
基于最小均方差估计的非线性IEM模型   总被引:1,自引:0,他引:1  
本文根据统计学中的最小均方差估计理论推导出非线性的IEM(NLIEM)模型公式,并综合实验数据确定了模型系数.这个模型考虑了标量场大尺度运动非均匀性,Re数以及Sc数对混合速率的影响.最后分别利用NLIEM和IEM模型对H2/空气湍流射流扩散火焰进行了计算,与实验结果的比较表明新模型有较大的优越性.  相似文献   

9.
氢气扩散火焰中辐射源项湍流脉动特征的PDF模拟   总被引:1,自引:0,他引:1  
采用κ-ε湍流模型、标量联合的概率密度函数(PDF)输运方程和层流火焰面模型相结合,模拟氢气自由扩散火焰中辐射源项湍流脉动特征.给出了主燃区内辐射源项湍流脉动的频率图.辐射源项的样本点分布集中,大约95%以上的样本落在其系综的±3倍方差以内,频谱图为单峰.  相似文献   

10.
《工程热物理学报》2021,42(10):2749-2755
在实际应用中,精确模拟高湍流度预混火焰十分关键但极具挑战性。本文将被动标量混合时间尺度动态封闭方法与hybrid混合时间尺度模型结合,在湍流预混火焰LES/FDF模拟中提出一种新的标量混合时间尺度建模方法。该方法不需要人为选取混合模型参数C_M,且动态地考虑了由湍流和火焰结构分别引起的亚网格标量混合。对悉尼值班预混射流燃烧器高湍流度PM1-150火焰进行了LES/FDF模拟。结果表明,新模型显著改善了对整体燃烧进程的预测结果,正确地预测了局部熄火/再燃现象。进一步的结果显示,模型参数C_M明显大于在RANS框架下量级为1的常用取值,这表明该参数在不同框架下具有不同的物理内涵。  相似文献   

11.
The statistical behaviour and the modelling of turbulent scalar flux transport have been analysed using a direct numerical simulation (DNS) database of head-on quenching of statistically planar turbulent premixed flames by an isothermal wall. A range of different values of Damköhler, Karlovitz numbers and Lewis numbers has been considered for this analysis. The magnitudes of the turbulent transport and mean velocity gradient terms in the turbulent scalar flux transport equation remain small in comparison to the pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation when the flame is away from the wall but the magnitudes of all these terms diminish and assume comparable values during flame quenching before vanishing altogether. It has been found that the existing models for the turbulent transport, pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation do not adequately address the respective behaviours extracted from DNS data in the near-wall region during flame quenching. Existing models for transport equation-based closures of turbulent scalar flux have been modified in such a manner that these models provide satisfactory prediction both near to and away from the wall.  相似文献   

12.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

13.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

14.
An inhomogeneous, non-premixed, stationary, turbulent, reacting model flow that is accessible to direct numerical simulation (DNS) is described for investigating the effects of mixing on reaction and for testing mixing models. The mixture-fraction-progress-variable approach of Bilger is used, with a model, finite-rate, reversible, single-step thermochemistry, yielding non-trivial stationary solutions corresponding to stable reaction and also allowing local extinction to occur. There is a uniform mean gradient in the mixture fraction, which gives rise to stationarity as well as a flame brush. A range of reaction zone thicknesses and Damkohler numbers are examined, yielding a broad spectrum of behaviour, including thick and thin flames, local extinction and near equilibrium. Based on direct numerical simulations, results from the conditional moment closure (CMC) and the quasi-equilibrium distributed reaction (QEDR) model are evaluated. Large intermittency in the scalar dissipation leads to local extinction in the DNS. In regions of the flow where local extinction is not present, CMC and QEDR based on the local scalar dissipation give good agreement with the DNS.M This article features multimedia enhancements available from the supplemental page in the online journal.  相似文献   

15.
This work investigates the structure of a diffusion flame in terms of lengthscales, scalar dissipation, and flame orientation by using large eddy simulation. This has been performed for a turbulent, non-premixed, piloted methane/air jet flame (Flame D) at a Reynolds-number of 22,400. A steady flamelet model, which was represented by artificial neural networks, yields species mass fractions, density, and viscosity as a function of the mixture fraction. This will be shown to suffice to simulate such flames. To allow to examine scalar dissipation, a grid of 1.97 × 106 nodes was applied that resolves more than 75% of the turbulent kinetic energy. The accuracy of the results is assessed by varying the grid-resolution and by comparison to experimental data by Barlow, Frank, Karpetis, Schneider (Sandia, Darmstadt), and others. The numerical procedure solves the filtered, incompressible transport equations for mass, momentum, and mixture fraction. For subgrid closure, an eddy viscosity/diffusivity approach is applied, relying on the dynamic Germano model. Artificial turbulent inflow velocities were generated to feature proper one- and two-point statistics. The results obtained for both the one- and two-point statistics were found in good agreement to the experimental data. The PDF of the flame orientation shows the tilting of the flame fronts towards the centerline. Finally, the steady flamelet approach was found to be sufficient for this type of flame unless slowly reacting species are of interest.  相似文献   

16.
A general model for multi-modal turbulent combustion is achievable with two-dimensional manifold equations that use the mixture fraction and a generalized progress variable as coordinates. Information about the underlying mode of combustion is encoded in three scalar dissipation rates that appear as parameters in the two-dimensional equations. In this work, Large Eddy Simulation (LES) of a multi-modal turbulent lifted hydrogen jet flame in a vitiated coflow is performed using this new turbulent combustion model, leveraging both convolution-on-the-fly and In-Situ Adaptive Tabulation for computational tractability. The simulation predicts a lifted flame consistent with observations from past experiments. The feasibility of such a model implemented in LES is examined, and the cost per timestep is found to be comparable to conventional one-dimensional manifold-based models describing one asymptotic mode of combustion. Additionally, the model provides clear interpretability, allowing for combustion mode analysis to be performed with ease by evaluating the scalar dissipation rates and generalized progress variable source term. This analysis is used to show that the flame is stabilized by autoignition and has a trailing nonpremixed flame. Furthermore, transport of progress variable from the most reactive mixture fraction towards richer mixtures at the centerline is found to be important.  相似文献   

17.
Large eddy simulation (LES) is conducted of the Sandia Flame D [Proc. Combust. Inst. 27 (1998) 1087, Sandia National Laboratories (2004)], which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology [J. Fluid Mech. 401 (1999) 85]. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities [Turbulent Flows (2000)]. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme. This is the first LES of a realistic turbulent flame using the transported PDF method as the SGS closure. The results via this method capture important features of the flame as observed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号