首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES
Authors:A Kempf  F Flemming  J Janicka
Institution:aTechnische Universität Darmstadt, EKT, Petersenstr. 30, D-64287 Darmstadt, Germany
Abstract:This work investigates the structure of a diffusion flame in terms of lengthscales, scalar dissipation, and flame orientation by using large eddy simulation. This has been performed for a turbulent, non-premixed, piloted methane/air jet flame (Flame D) at a Reynolds-number of 22,400. A steady flamelet model, which was represented by artificial neural networks, yields species mass fractions, density, and viscosity as a function of the mixture fraction. This will be shown to suffice to simulate such flames. To allow to examine scalar dissipation, a grid of 1.97 × 106 nodes was applied that resolves more than 75% of the turbulent kinetic energy. The accuracy of the results is assessed by varying the grid-resolution and by comparison to experimental data by Barlow, Frank, Karpetis, Schneider (Sandia, Darmstadt), and others. The numerical procedure solves the filtered, incompressible transport equations for mass, momentum, and mixture fraction. For subgrid closure, an eddy viscosity/diffusivity approach is applied, relying on the dynamic Germano model. Artificial turbulent inflow velocities were generated to feature proper one- and two-point statistics. The results obtained for both the one- and two-point statistics were found in good agreement to the experimental data. The PDF of the flame orientation shows the tilting of the flame fronts towards the centerline. Finally, the steady flamelet approach was found to be sufficient for this type of flame unless slowly reacting species are of interest.
Keywords:Large eddy simulation  Flamelets  Non-premixed  Artificial neural networks  Lengthscales
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号