首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper we present the effect of low substrate temperature on structural, morphological, magnetic and optical properties of Ba-hexaferrite thin films. Films were deposited on single crystal Silicon (1 0 0) substrate employing the Pulsed Laser Deposition (PLD) technique. The structural, morphological, magnetic and optical properties are found to be strongly dependent on substrate temperature. The low substrate temperatures (room temperature to 200 °C) restrict the formation of larger grains. For the higher substrate temperature i.e., 400 °C, the grain size of the deposited thin film are much larger. The film grown at low substrate temperature do not show any anisotropy. As the substrate temperature is increased, the easy axis of the films alinged itself in the direction parallel to the film plane whereas the hard axis remained in the perpendicular direction. The higher substrate temperature caused the uniaxial magnetic anisotropy, which is very important in magnetic recording devices. The saturation magnetization and optical band gap energy values of 62 emu/cc and 1.75 eV, respectively, were achieved for the film of thickness 500 nm deposited at 400 °C. Higher values of coercivity, squareness and films thickness are associated with the growth of larger grains at higher substrate temperature.  相似文献   

2.
Pure and l-alanine doped Triglycine sulphate (TGS) crystals were grown in paraelectric phase (∼52 °C). Doped crystals show unequal growth rates along the ferroelectric axis. Pure TGS crystals show peculiar dielectric behavior in the ferroelectric phase, after crossing up and down the Curie point in two successive runs between room temperature and 80 °C. Much higher and unstable permittivity was found returning in the ferroelectric phase. At constant temperature (35 °C), permittivity follows a relaxation process, characterized by two relaxation times. l-Alanine doped TGS crystal shows more than one order of magnitude smaller permittivity and dielectric losses. Internal bias field of ∼1 kV/cm, induced by the dopant, made the crystal almost monodomain and pined polarization in one direction. Pyroelectric coefficient measurements were performed at constant heating rate of the samples, using a computer controlled He cryostat and Keithley 6517 electrometer. The temperature dependence of P+ polarization component, obtained by computer integration of the pyroelectric coefficient, was measured on a large temperature interval (−20/+80 °C). Pyroelectric coefficient of the doped samples was also measured by the same procedure, using a dc bias electric field, pointing in the opposite direction to the pined polarization. The polarization could be reversed, on the whole temperature range, by dc fields higher than bias or coercive field. Surprisingly, for the first time, the pyroelectric coefficient (p) was found constant on quite large temperature intervals. Doped TGS crystals show much smaller values of permittivity ?r versus the pure one and consequently, get higher figure of merit M = p/?r. The pyroelectric coefficient of this material can be tailored to become constant on a defined temperature range, under a dc field control. This characteristic makes this material valuable to be used as pyroelectric material for IR devices.  相似文献   

3.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

4.
Al-doped ZnO (AZO) thin films oriented along the (0 0 2) plane have been prepared by the sol-gel process and their electrical and optical properties with post-deposition heating temperature were investigated. The preferred c-axis orientation along the (0 0 2) plane was enhanced with increasing post-deposition heating temperature and the surface of the films showed a uniform and nano-sized microstructure. The electrical resistivity of the films decreased from 73 to 22 Ω cm as the post-deposition heating temperature increased from 500 to 650 °C; however, the film postheated at 700 °C increased greatly to 580 Ω cm. The optical transmittance of the films postheated below 650 °C was over 86%, but it decreased at 700 °C. The electrical and optical properties of the AZO films with post-deposition heating temperature are discussed.  相似文献   

5.
We have investigated the formation and growth of nano sized ripple topography on ZnO thin films by 10 keV O1+ bombardment at impact angles of 80° and 60°, varying the ion fluence from 5 × 1016 to 1 × 1018 ions/cm2. At 80° the ripples are oriented along the ion beam direction whereas at 60° it is perpendicular to the ion beam direction. The developed ion induced structures are characterized by atomic force microscopy (AFM) and the alignment, variation of rms roughness, wavelength and correlation length of the structures are discussed with the existing model and basic concept of ion surface interaction.  相似文献   

6.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

7.
FePt (20 nm) films were annealed in a magnetic field (along the normal direction of the films) at a temperature around the Curie temperature of L10 FePt. The influence of magnetic filed annealing on texture and magnetic properties of FePt films were investigated. The results indicate that preferential (0 0 1) orientation and perpendicular anisotropy can be obtained in L10 FePt films by using magnetic field annealing around the Curie temperature of L10 FePt. This is one of the potential methods to obtain (0 0 1) orientation and thus to improve the perpendicular anisotropy in FePt films.  相似文献   

8.
The experimental results on the synthesis and characterization of tetraethoxysilane (TEOS) based hydrophobic silica aerogels using hexadecyltrimethoxysilane (HDTMS) as a hydrophobic reagent by two step sol-gel process, are described. The molar ratio of tetraethoxysilane (TEOS), methanol (MeOH), acidic water (0.001 M, oxalic acid) and basic water (10 M, NH4OH) was kept constant at 1:55:3.25:1.25 and the molar ratio of HDTMS/TEOS (M) was varied from 0 to 28.5 × 10−2. The organic modification was confirmed by infrared spectroscopic studies, and the hydrophobicity of the aerogels was tested by the contact angle measurements. The maximum contact angle of 152° was obtained for M = 22.8 × 10−2. The aerogels retained the hydrophobicity up to a temperature of 240 °C and above this temperature the aerogels became hydrophilic. The aerogels were characterized by the thermal conductivity, density, contact angle measurements, optical transmission and scanning electron micrographs.  相似文献   

9.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

10.
This study investigates the nonlinear optical properties of azo-dye-doped nematic and polymer-dispersed liquid crystal (ADDPDLC) films with nano-sized LC droplets using the Z-scan technique, which is a simple but powerful technique for measuring the optical Kerr constants of materials. The results indicate that the optical Kerr constant (n2) of the azo-dye-doped nematic LC (ADDLC) film is large because of the photoisomerization effect and the thermal effect. Therefore, the optical Kerr constant of this material can be modulated by varying the temperature of the sample and the direction of polarization of incident laser. The range of n2 modulated is from −5.26 × 10−3 to 1.62 × 10−3 cm2/W. The optical Kerr constants of ADDPDLC films at various temperatures are also measured. The experimental results reveal that liquid crystals in the ADDPDLC film strengthen the nonlinearity. The n2 of the ADDPDLC film is maximal at ∼35 °C, because of the decrease in the clearing temperature of the ADDPDLC films. The clearing temperatures of the liquid crystals (E7), and the ADDPDLC film used in this work were found to be 61 °C and 43 °C, respectively.  相似文献   

11.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

12.
During bicolor optical treatment by two coherent laser beams from 25 ps Erbium-glass laser (λ = 1.54 μm), we have established substantial increase of effective optical second-order susceptibility near the critical temperature points corresponding to the glass structural transformation near 435 °C. The increasing Er3+ content favors substantial increase of the photoinduced optical second harmonic generation (SHG). This temperature dependence of the second-order optical susceptibilities detected by the SHG correlates well with the differential scanning calorimetric (DSC) measurements. At the same time, the effect exists only in a narrow temperature range (up to 12 °C) . There was not temperature hysteresis. Possible physical mechanisms of the phenomenon observed are discussed.  相似文献   

13.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

14.
An efficient flat-top illuminating optical system optimized for an extended light source is presented. The source is a high-brightness high divergence light emitting diode (LED), sized 1 mm × 1 mm, producing monochromatic emission (525 ± 5 nm) with viewing angle of 130°. The design is based on a rotationally symmetrical catadioptric system, developed on a geometrical optics basis, and modelled with ZEMAX® software. The device consists of two optical systems: (i) a collimating system which, in turn, is formed by an aspheric lenses system (low numerical apertures, NA < 0.26) and two-mirror system (0.26 < NA < 0.86), and (ii) an external mirror (NA > 0.86) designed and optimized for each purpose. By itself, the collimating system works with a residual divergence of θC = 1.46°. The external mirror can be adequately designed to produce some given conditions. For instance, a flat-top profile is obtained in the selected focusing plane, with a maximum transversal intensity variation of 2.5% over 18 mm. In addition, when the focusing mirror is allowed to move along the optical axis in a ±1 mm range, other interesting profiles can be reached for a given working distance, therefore increasing the versatility of the system.  相似文献   

15.
The thermal stability and measurement temperature dependence of Schottky contact characteristics on n-GaN using a W2B5/Ti/Au metallization scheme was studied using current-voltage (I-V), scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) measurements. The elemental profile obtained from samples annealed at 350 °C showed some titanium diffusion into the gold layer but little other difference from the as-deposited wafer. Annealing at 700 °C produced significant diffusion of titanium. The Schottky barrier height increased with anneal temperature up to 200 °C, reaching a maximum value of 0.65 eV, but decreased at higher annealing temperatures. The reverse breakdown voltage from diodes fabricated using the W2B5-based contacts showed a similar dependence. The reverse current magnitude was larger than predicted by thermionic emission alone. The barrier height showed only minor changes with measurement temperature up to 150 °C.  相似文献   

16.
In order to investigate the effect of thermal oxidation temperature on tin dioxide (SnO2), tin dioxide films were obtained on quartz substrates by vacuum evaporation of tin metal. The films were characterized by X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), temperature dependent electrical resistivity measurement and optical absorption spectroscopy. The SEM images showed that the films are dense, continuous and are composed of nanoparticles and particle sizes are increased after thermal oxidation. From the X-ray measurement results, the films indicated two strong reflection peaks of tetragonal structure in the orientations of (1 0 1) and (2 0 0) at 2θ = 33.89° and 37.95°, respectively. Intensity of the peaks increased with increasing thermal oxidation temperature. We found resistivity values of about 10−4 Ω-cm. Optical absorption spectra of the films in the UV–Vis spectral range revealed that optical band gap (Eg) value of the films increases with increasing thermal oxidation temperature.  相似文献   

17.
The potential organic nonlinear optical single crystal of 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate has been grown by slow evaporation solution growth technique (SEST) using ethanol–water solution at room temperature. The powder X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non-centrosymmetric space group P212121 and the cell parameters are a = 7.61 Å, b = 10.73 Å, c = 29.49 Å, V = 2410.75 Å3. The functional groups of the synthesized compound have been identified by FT-Raman and FTIR analyses. Photoluminescence spectroscopy study is determined to explore its efficacy towards device fabrications. Birefringence measurement has been carried out in order to analyze the optical homogeneity of the grown crystal. The optical constants such as reflectance (R) and extinction coefficient (K) have been determined from the transmittance data. The relative second harmonic efficiency of the compound is found to be 4 times greater than that of KDP. DTA-DSC measurements indicate that the crystal is thermally stable up to 174 °C.  相似文献   

18.
Comprehensive and systematic optical activation studies of Si-implanted GaN grown on sapphire substrates have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 to 5×1015 cm−2 at room temperature. The samples were proximity cap annealed from 1250 to 1350 °C with a 500-Å-thick AlN cap in a nitrogen environment. The results of photoluminescence measurements made at 3 K show a very sharp neutral-donor-bound exciton peak along with a sharp donor-acceptor pair peak after annealing at 1350 °C for 20 s, indicating excellent implantation damage recovery. The results also indicate the AlN cap protected the implanted GaN layer very well during high temperature annealing without creating any significant anneal-induced damage. This observation is consistent with the electrical activation results for these samples.  相似文献   

19.
An optical technique for precise, non-contact, and real time measurement of silicon wafer temperature that uses the polarized reflectivity ratio Rp/Rs is described. The proposed method is based on temperature dependence of the optical functions of silicon. Expected strong temperature sensitivity is obtained near band gap. Simultaneous monitoring of temperature and oxide layer thickness is discussed using measurements at four wavelength 365 nm, 405 nm, 546 nm, and 820 nm.  相似文献   

20.
We have grown zinc-blende cadmium selenide (CdSe) epilayers on ZnTe-(0 0 1) substrate by molecular beam epitaxy (MBE). By controlling the substrate temperature and beam-equivalent pressure (BEP) ratio, of Se to Cd, we determined the most suitable growth condition based on reflection high-energy electron diffraction (RHEED) pattern. At a substrate temperature of 280 °C and a BEP ratio of 3.6, the RHEED pattern showed a V-like feature, indicating a rough surface with facets. As the substrate temperature was increased to 360 °C at the same BEP ratio, a V-like RHEED pattern moved to a clear streaky pattern. Moreover when the BEP ratio was increased to 4.8 at 360 °C of substrate temperature, a clear (2 × 1) reconstruction of the CdSe layer was observed. A CdSe/CdMgSe single quantum well structure was also grown on ZnTe-(0 0 1) substrate by MBE. The RHEED pattern showed a clear (2 × 1) surface reconstruction during the growth. By photoluminescence measurement, a good optical property of the structure was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号