首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron magnetic chiral dichroism (EMCD) has been studied in CrO2 thin films (with (100) and (110) growth orientations on TiO2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ∼10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8–9 min in energy filtered imaging mode for a given Cr L2,3 energy scan (energy range ∼35 eV). We compared the EMCD signal obtained by extracting the Cr L2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO2 are compared and discussed with XMCD theoretical spectra.  相似文献   

2.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

3.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

4.
Electron energy loss spectroscopy maps using a transmission electron microscope were used to investigate with nanometer spatial resolution the Mn distribution of a MnxGe1−x ion implanted alloy (x ? 4%). Mn is fully diluted in the Ge matrix in a subsurface implanted layer, showing concentration inhomogeneities at the nm scale. In the deep implanted layers the presence of Mn rich clusters—either amorphous or in the Mn5Ge3 phase—is directly evidenced. Scanning Tunneling Microscopy/Spectroscopy directly shows that the Mn5Ge3 clusters are metallic, while those smaller and amorphous are semiconducting with 0.45 ± 0.05 eV band gap. The Ge matrix with Mn dilution is semiconducting with 0.60 ± 0.05 eV gap. Electronic structure results are compared with ab-initio calculations.  相似文献   

5.
Single crystals of a nonlinear optical material, zinc thiourea chloride were grown by the slow evaporation technique. The crystal structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction studies. The single crystal XRD revealed that the material crystallized in a orthorhombic crystal system. Optical studies were carried out and it was found that the tendency of transmission observed from the specimen, with respect to the wavelength of light, is practically more suitable for opto-electronic applications. The optical band gap is found to be 4.30 eV. Optical constants such as the band gap, refractive index, reflectance, extinction coefficient and real (?r) and imaginary (?i) components of the dielectric constant and electric susceptibility were determined from the UV–vis–NIR spectrum. The dielectric constant and dielectric loss of zinc thiourea chloride were measured in the different frequency range from 50 Hz to 5 MHz at different temperatures. Further, electronic properties, such as valence electron plasma energy, Penn gap, Fermi energy and electronic polarizability of the grown crystal have been estimated.  相似文献   

6.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, EC—0.33 eV, EC—0.36 eV, EC—0.38 eV and EC—0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at EC—0.58 eV. Isochronal annealing of the passivated material between 50 and 300 °C, revealed the emergence of a secondary defect, not previously observed, at EC—0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 °C, as all the defects originally observed in the reference sample were recovered.  相似文献   

7.
D.J. Kim  Y.D. Choi 《Applied Surface Science》2011,257(24):10402-10407
High quality hexagonal CdS epilayer was grown on GaAs (1 1 1) substrates by the hot-wall epitaxy method. The crystal structure of the grown CdS epilayers was confirmed to be the hexagonal structure by X-ray diffraction pattern and scanning electron microscopy image. The optical properties of the hexagonal CdS epilayers were investigated in a wide photon energy range between 2.0 and 8.5 eV using spectroscopic ellipsometry (SE) at room temperature. The data obtained by SE were analyzed to find the critical points of the pseudodielectric function spectra, 〈?(E)〉 = 〈?1(E)〉 + i?2(E)〉, such as E0, E1A, E1B, E0, F1, and two E2 structures. In addition, the second derivative spectra, d2?(E)/dE2, of the pseudodielectric function of hexagonal CdS epilayers were numerically calculated to determine the critical structures. Four structures, such as E0F1, and two E2 structures, from 6.0 eV to 8.0 eV were observed, for the first time, at 300 K by ellipsometric measurements for the hexagonal CdS epilayers.  相似文献   

8.
Carbon contamination on extreme ultraviolet (EUV) optics has been observed in EUV lithography. In this paper, we performed in situ monitoring of the build-up and removal of carbon contamination on Mo/Si EUV multilayers by measuring the secondary electron yield as a function of primary electron energy. An electron beam with an energy of 2 keV was used to simulate the EUV radiation induced carbon contamination. For a clean EUV multilayer, the maximum secondary electron yield is about 1.5 electrons per primary electron at a primary electron energy of 467 eV. The maximum yield reduced to about 1.05 at a primary electron energy of 322 eV when the surface was covered by a non-uniform carbon layer with a maximum thickness of 7.7 nm. By analyzing the change in the maximum secondary electron yield with the final carbon layer thickness, the limit of detection was estimated to be less than 0.1 nm.  相似文献   

9.
Nanostructures based on iron oxides in the form of thin films were synthesized while laser chemical vapor deposition (LCVD) of elements from iron carbonyl vapors (Fe(CO)5) under the action of Ar+ laser radiation (λL = 488 nm) on the Si substrate surface with power density about 102 W/cm2 and vapor pressure 666 Pa. Analysis of surface morphology and relief of the deposited films was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). This analysis demonstrated their cluster structure with average size no more than 100 nm. It was found out that the thicker the deposited film, the larger sizes of clusters with more oxides of higher oxidized phases were formed. The film thickness (d) was 10 and 28 nm. The deposited films exhibited semiconductor properties in the range 170-340 K which were stipulated by oxide content with different oxidized phases. The width of the band gap Eg depends on oxide content in the deposited film and was varied in the range 0.30-0.64 eV at an electrical field of 1.6 × 103 V/m. The band gap Eg was varied in the range 0.46-0.58 eV at an electrical field of 45 V/m. The band gap which is stipulated by impurities in iron oxides Ei was varied in the range 0.009-0.026 eV at an electrical field of 1.6 × 103 V/m and was varied in the range 0-0.16 eV at an electrical field 45 V/m. These narrow band gap semiconductor thin films displayed of the quantum dimensional effect.  相似文献   

10.
Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (1 1 1) In2O3 with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T = 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T ? 370 °C. At temperatures of 160 and 250 °C unusual “oxidizing” behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (1 1 1) In2O3 surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O2 and CO for low temperatures (T = 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O2 and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (1 1 1) In2O3 surface explains earlier revealed acceptor-like behavior of In2O3 film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.  相似文献   

11.
H.Y. Hu 《Applied Surface Science》2008,254(24):8029-8034
The chemical structure and site location of sulfur atoms on n-GaAs (1 0 0) surface treated by bombardment of S+ ions over their energy range from 10 to 100 eV have been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. The formation of Ga-S and As-S species on the S+ ion bombarded n-GaAs surface is observed. An apparent donor doping effect is observed for the n-GaAs by the 100 eV S+ ion bombardment. It is found that the S+ ions with higher energy are more effective in the formation of Ga-S species, which assists the n-GaAs (1 0 0) surface in reconstruction into an ordered (1 × 1) structure upon subsequent annealing. The treatment is further extended to repair Ar+ ion damaged n-GaAs (1 0 0) surface. It is found that after a n-GaAs (1 0 0) sample is damaged by 150 eV Ar+ ion bombardment, and followed by 50 eV S+ ion treatment and subsequent annealing process, finally an (1 × 1) ordering GaAs (1 0 0) surface with low surface states is obtained.  相似文献   

12.
We have investigated the spreading of rhodium at coverages of 0.25, 0.5, 1, 2 and 3 ML over the curved surface of a field emitter tip using field electron microscopy. We have found that the activation energy of spreading as well as the prefactor for the diffusivity depend strongly on the thickness of the layer diffusing, due to a change in interactions in the adsorbate-substrate system. The derived average activation energy for spreading first decreases from Edif = 1.32 eV/atom at Θ = 0.25 ML to Edif = 0.71 eV at Θ ≈ 2 ML and than rises again to Edif = 1.20 eV at Θ ≈ 3 ML. The prefactor for the diffusivity D0 also decreases with increasing coverage from 0.5 to 1 ML, and stays almost constant for multilayer diffusion in a range of few orders of magnitude lower than for single atom diffusion. We register typical spreading behavior with a sharp moving boundary in the (0 1 1)-(0 0 1) zone of the tip and an unusual picture of diffusion in the (0 1 1)-(1 1 2) region of the tip. In the second region diffusion proceeds without a sharp boundary, independent of the thickness of the moving layer. We think that such an unusual picture can be caused by the change in composition of the second and next layers of adsorbing material due to the early stage of faceting observed in this region of the tip at higher temperature. The results are compared with data for diffusion of individual Rh atoms and small clusters; to understand the observed diffusion we propose taking account of the atomic surface structure of the substrate, modified by strong interactions of the Rh adsorbate with the W micro-crystal surface.  相似文献   

13.
The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al2O3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.  相似文献   

14.
We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be EE = 20. This value is better than that of the miniature single-pass CMA (EE = 12) that was used in the previous APECS analyzer.  相似文献   

15.
Silver cluster films deposited on Si(1 1 1) were investigated by spectroscopic photoelectron microscopy using fs-laser excitation tuneable between  = 1.45-1.65 eV and 2.9-3.3 eV. With increasing coverage the films grown as stepped wedges first exhibit clusters of few nanometers diameter with narrow size distributions that later agglomerate forming larger islands up to about 100 nm diameter. The cluster films have been characterized by SEM, AFM and HR-TEM. In the 3.1 eV range the small clusters emit more effectively and the dependence of electron yield on laser power follows a quadratic power law. Microspectroscopy reveals that the Fermi level onset is sharp(<150 meV width) and shifts by 2 when the quantum energy is increased, thus confirming the predominance of two-photon-photoemission (2PPE). Under 1.6 eV excitation the situation is different: The power dependence is non-integer and the slope varies between 2.9 and 3.7 for different points on the sample. The Fermi edge appears smeared out and shifted by several hundred meV to lower final state energies. We attribute this deviation from pure 3PPE to thermally assisted nPPE of electrons from a transient “hot electron” gas in the nanoparticles.  相似文献   

16.
Kinetic energy distributions of helium ions produced by field ionization above the (100), (110), and (111) planes of tungsten field emitters are reported. The energy resolution of these measurements if 0.3 eV fwhm. The main peak of these distributions is found to shift by as much as 0.7 eV at F = 5.3 V/A?, T = 21 K, when the origin of the ions collected is changed slightly. Several possible explanations for this shift are discussed. The most plausible of these involves electron tunneling through a field adsorbed helium atom. These results have important implications for the use of field ion energy distributions as a probe of the density of electronic states of the emitter.  相似文献   

17.
Spectroscopic ellipsometry measurements on TlGaSe2, TlGaS2 and TlInS2 layered crystals were carried out on the layer-plane (0 0 1) surfaces, which are perpendicular to the optic axis c?, in the 1.2–6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were found as a result of analysis of ellipsometric data. The structures of critical points in the above-band gap energy range have been characterized from the second derivative spectra of the pseudodielectric function. The analysis revealed four, five and three interband transition structures with critical point energies 2.75, 3.13, 3.72 and 4.45 eV (TlGaSe2), 3.03, 3.24, 3.53, 4.20 and 4.83 eV (TlGaS2), and 3.50, 3.85 and 4.50 eV (TlInS2). For TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure.  相似文献   

18.
We propose and demonstrate an OCT optical probe using eccentric optics. This probe enabled both forward imaging and side imaging by dividing a circular scanning area into two semicircular scanning areas using an external motor to rotate the flexible tube. The outer diameter of the probe was 2.6 mm, and its rigid portion length was 10 mm. The lateral resolution was 23 μm, and the eccentric radius was 1.1 mm. The circumferential length in scanning was 6.9 mm, and the working distance was 5 mm. OCT images of 1.5 mm × 6.9 mm (in tissue, axial × circumference), including forward image and side image, were measured with the axial resolution of 19 μm in air and a frame rate of one frame per second. The epidermis, dermis, and sweat gland of in vivo human ventral finger tips were observed.  相似文献   

19.
Two luminescence bands in the UV range were detected in crystalline α-quartz under electron beam excitation (6 kV, 3-5 μA). One band is situated at 5 eV and could be observed in pure samples. Its intensity increases with cooling below 100 K and undergoes saturation below 40 K alongside a slow growth with the time of irradiation at 9 K. The decay curve of the band at 5 eV contains two components, a fast (<10 ns) and a slow one in the range of 200 μs. The photoluminescence band at 5 eV with a similar temperature dependence was found in previously neutron-irradiated crystalline α-quartz. Therefore, the band at 5 eV was attributed to host material defects in both irradiation cases. The creation mechanism of such defects by electrons, the energy of which is lower than the threshold for a knock-out mechanism of defect creation, is discussed. Another band at 6 eV, containing subbands in different samples, appears in the samples containing aluminum, lithium and sodium ions. This luminescence is ascribed to a tunnel radiative transition in an association of (alkali atom)0-[AlO4]+ that is formed after the trapping of an electron and a hole by Li+ (or Na+) and AlO4.  相似文献   

20.
The surface photoelectric effect and the surface plasmon resonances appear when a p/transverse magnetic polarized laser hits a gas-solid interface. We model this effect in the long wave length (LWL) domain (λvac > 10 nm,  < 124 eV) by combining the Ampère-Maxwell equation, written in classical approximation, with the material equation for the susceptibility. The resulting model, called the vector potential from the electron density (VPED), calculates the susceptibility as a product of the bulk susceptibility and the electron density of the actual system. The bulk susceptibility is a sum of the bound electron scalar susceptibility taken from the experiment and of the conduction electron non-local isotropic susceptibility tensor in a jellium metal (Lindhard, 1954 [1]). The electron density is the square of the wave function solution of the Schrödinger equation. The analysis of observables, the reflectance R and the photoelectron yield Y as well as the induced charge density permits to identify and characterize the multipole surface plasmon resonance of Al(111) appearing at ωm ∼ 0.8ωp or 11-12 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号