首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4519篇
  免费   128篇
  国内免费   16篇
化学   3169篇
晶体学   44篇
力学   103篇
综合类   2篇
数学   253篇
物理学   1092篇
  2021年   35篇
  2020年   44篇
  2019年   48篇
  2018年   36篇
  2017年   34篇
  2016年   78篇
  2015年   79篇
  2014年   94篇
  2013年   222篇
  2012年   229篇
  2011年   286篇
  2010年   136篇
  2009年   126篇
  2008年   239篇
  2007年   223篇
  2006年   239篇
  2005年   227篇
  2004年   226篇
  2003年   204篇
  2002年   157篇
  2001年   120篇
  2000年   94篇
  1999年   56篇
  1998年   41篇
  1997年   50篇
  1996年   52篇
  1995年   45篇
  1994年   55篇
  1993年   56篇
  1992年   64篇
  1991年   39篇
  1990年   46篇
  1989年   52篇
  1988年   48篇
  1987年   47篇
  1986年   42篇
  1985年   86篇
  1984年   86篇
  1983年   29篇
  1982年   52篇
  1981年   42篇
  1980年   48篇
  1979年   74篇
  1978年   56篇
  1977年   60篇
  1976年   61篇
  1975年   35篇
  1974年   28篇
  1973年   28篇
  1972年   16篇
排序方式: 共有4663条查询结果,搜索用时 15 毫秒
1.
Algebras and Representation Theory - We study syzygies of (maximal) Cohen–Macaulay modules over one dimensional Cohen–Macaulay local rings. We assume that rings are generically...  相似文献   
2.
Kobayashi  M.  Zhang  Y.  Ishikawa  H.  Sun  J.  Oddershede  J.  Juul Jensen  D.  Miura  H. 《Experimental Mechanics》2021,61(5):817-828
Experimental Mechanics - The internal strain distribution developing during plastic deformation is important for understanding the mechanical properties of polycrystalline materials. Such...  相似文献   
3.
The influence of wall heat loss on the emission characteristics of ammonia-air swirling flames has been investigated employing Planar Laser-Induced Fluorescence imaging of OH radicals and Fourier Transform Infrared spectrometry of the exhaust gases in combustors with insulated and uninsulated walls over a range of equivalence ratios, ?, and pressures up to 0.5 MPa. Strong influence of wall heat loss on the flames led to quenching of the flame front near the combustor wall at 0.1 MPa, resulting in large unburned NH3 emissions, and inhibited the stabilization of flames in the outer recirculating zone (ORZ). A decrease in heat loss effects with an increase in pressure promoted extension of the fuel-rich stabilization limit owing to increased recirculation of H2 from NH3 decomposition in the ORZ. The influence of wall heat loss resulted in emission trends that contradict already reported trends in literature. NO emissions were found to be substantially low while unburned NH3 and N2O emissions were high at fuel-lean conditions during single-stage combustion, with values such as 55 ppmv of NO, 580 ppmv of N2O and 4457 ppmv of NH3 at ? = 0.8. In addition, the response of the flame to wall heat loss as pressure increased was more important than the effects of pressure on fuel-NO emission, thereby leading to an increase in NO emission with pressure. It was found that a reduction in wall heat loss or a sufficiently long fluid residence time in the primary combustion zone is necessary for efficient control of NH3 and N2O emissions in two-stage rich-lean ammonia combustors, the latter being more effective for N2O in addition to NO control. This study demonstrates that the influence of wall heat loss should not be ignored in emissions measurements in NH3-air combustion, and also advances the understanding of previous studies on ammonia micro gas turbines.  相似文献   
4.
We first studied the reactivity of H2O vapor in metal–organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water–gas shift (WGS) reaction. A water‐stable MOF, UiO‐66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO‐66, where Pt NCs are located on the surface of UiO‐66 and Pt@UiO‐66, where Pt NCs are coated with UiO‐66, we found that the competitive effects of H2O condensation and diffusion in the UiO‐66 play important roles in the catalytic activity of Pt NCs. A thinner UiO‐66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2O diffusion in UiO‐66.  相似文献   
5.
The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2O2-photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.  相似文献   
6.
This study examined the effects of OH concentration and temperature on the NO emission characteristics of turbulent, non-premixed methane (CH4)/ammonia (NH3)/air swirl flames in two-stage combustors at high pressure. Emission data were obtained using large-eddy simulations with a finite-rate chemistry method from model flames based on the energy fraction of NH3 (ENH3) in CH4/NH3 mixtures. Although NO emissions at the combustor exit were found to be significantly higher than those generated by CH4/air and NH3/air flames under both lean and stoichiometric primary zone conditions, these emissions could be lowered to approximately 300 ppm by employing far-rich equivalence ratios (?) of 1.3 to 1.4 in the primary zone. This effect was possibly due to the lower OH concentrations under far-rich conditions. An analysis of local flame characteristics using a newly developed mixture fraction equation for CH4/NH3/air flames indicated that the local temperature and NO and OH concentration distributions with local ? were qualitatively similar to those in NH3/air flames. That is, the maximum local NO and OH concentrations appeared at local ? of 0.9, although the maximum temperature was observed at local ? of 1.0. Both the temperature and OH concentration were found to gradually decrease with the partial replacement of CH4 with NH3. Consequently, NO emissions from CH4/NH3 flames were maximized at ENH3 in the range of 20% to 30%, after which the emissions decreased. Above 2100 K, the NO emissions from CH4/NH3 flames increased exponentially with temperature, which was not observed in NH3/air flames because of the lower flame temperatures in the latter. But, the maximum NO concentration in CH4/NH3 flames was occurred at a temperature slightly below the maximum temperature, just as in NH3/air flames. The apparent exponential increase in NO emissions from CH4/NH3 flames is attributed to a similar trend in the OH concentration at high temperatures.  相似文献   
7.
A new H-bonded crystal [RuIII(Him)3(Im)3] with three imidazole (Him) and three imidazolate (Im) groups was prepared to obtain a higher-temperature proton conductor than a Nafion membrane with water driving. The crystal is constructed by complementary N−H⋅⋅⋅N H-bonds between the RuIII complexes and has a rare Icy-c* cubic network topology with a twofold interpenetration without crystal anisotropy. The crystals show a proton conductivity of 3.08×10−5 S cm−1 at 450 K and a faster conductivity than those formed by only HIms. The high proton conductivity is attributed to not only molecular rotations and hopping motions of HIm frameworks that are activated at ∼113 K, but also isotropic whole-molecule rotation of [RuIII(Him)3(Im)3] at temperatures greater than 420 K. The latter rotation was confirmed by solid-state 2H NMR spectroscopy; probable proton conduction routes were predicted and theoretically considered.  相似文献   
8.
We investigate a miniaturized X-ray source using an ultraviolet (UV) laser and a pyroelectric crystal and discuss potential applications in medicine. The UV laser is the fourth harmonic of a Nd:YAG laser with a wavelength of 266 nm, repetition rate of 10 Hz, and pulse energy of 40 mJ. The pyroelectric crystal is a LiNbO3 cylinder of diameter 10 mm and length 6 mm. The prototype X-ray source we fabricated is an aluminum parallelepiped of dimensions 3 × 3 × 5 cm. The X-ray count rate of the X-ray source is maximized at approximately 1,400 cps for UV laser irradiation of approximately 5 min. After 30 min of irradiation by the UV laser, the temperature of the pyroelectric crystal rose from 295 K to 312 K. The principles of X-ray generation ensure that X-ray sources using UV lasers and pyroelectric crystals offer ample opportunity for miniaturization. We believe the X-ray source developed in this work is suitable for medical applications, although further study is needed to address points such as increasing the X-ray count rate and adjusting the temperature of the pyroelectric crystal.  相似文献   
9.
A new xenicane diterpenoid, 15-deoxy-isoxeniolide-A (1) along with four known compounds 9-deoxy-isoxeniolide-A (2), isoxeniolide-A (3), xeniolide-A (4) and coraxeniolide-B (5) were isolated from the Bornean soft coral Xenia sp. The structures of these metabolites were elucidated on the basis of spectral analysis, NMR and HRESIMS. Compound 5 showed cytotoxic activity against ATL cell line, S1T.  相似文献   
10.
In this paper, we discuss a local energy decay estimate of solutions to the initial-boundary value problem for the hyperbolic type Stokes equations of incompressible fluid flow in an exterior domain and a perturbed half-space. The equations are linearized version of the hyperbolic Navier–Stokes equations introduced by Racke and Saal [15], which are obtained as a delayed case for the deformation tensor in the incompressible Navier–Stokes equations. Our proof of the local energy decay estimate is based on Dan and Shibata [2]. In [2], they treated the dissipative wave equations in an exterior domain and discussed the local energy decay estimate. Our approach uses the fact that applying the Helmholtz projection to the hyperbolic type Stokes equations, we obtain equations similar to the dissipative wave ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号