首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
An all-optical reconfigurable logic operation essentially constitutes a key technology for avoiding complex and speed limited optoelectronics conversions and performing various processing tasks. All-optical reconfigurable logic operations with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed and described. The paper describes the all-optical reconfigurable logic operations using a set of all-optical multiplexer and optical switches. We have tried to exploit the advantages of TOAD-based switch to design an integrated all-optical circuit which can perform the different logic operations AND, XOR, NOR and NOT. Numerical simulation confirming described methods is given in this paper.  相似文献   

2.
In recent years, reversible logic has emerged as a promising computing paradigm having application in low-power CMOS, quantum computing, nanotechnology and optical computing. Optical logic gates have the potential to work at macroscopic (light pulses carry information), or quantum (single photons carry information) levels with great efficiency. However, relatively little has been published on designing reversible logic circuits in all-optical domain. In this paper, we propose and design a novel scheme of Toffoli and Feynman gates in all-optical domain. We have described their principle of operations and used a theoretical model to assist this task, finally confirming through numerical simulations. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) can play a significant role in this field of ultra-fast all-optical signal processing. The all-optical reversible circuits presented in this paper will be useful to perform different arithmetic (full adder, BCD adder) and logical (realization of Boolean function) operations in the domain of reversible logic-based information processing.  相似文献   

3.
Tanay Chattopadhyay 《Optik》2009,120(17):941-4330
Multi-valued logic is positioned as a coming generation technology that can execute arithmetic functions faster and with less interconnect than binary logic. Furthermore, nonbinary data storage would require less physical space than binary data. The application of multi-valued digital signals can provide considerable relief of capacity constraints. In electronics many proposals have already been reported. But, here for the first time we propose an all-optical circuit for designing quaternary (four-valued) multiplexer and demultiplexer with the help of some polarization-encoded basic quaternary logic gates (quaternary min and quaternary delta literal). Nonlinear interferometer-based optical switch can take an important role here. The principles and possibilities of design of all-optical quaternary multi-valued multiplexer and demultiplexer circuits are proposed and described.  相似文献   

4.
The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication).  相似文献   

5.
Semiconductor ring laser (SRL) has been shown to possess robust bistability between its two possible directions, i.e., clockwise (cw) and counter-clockwise (ccw) lasing, routinely demonstrating directional extinction ratio (DER) of 〉 25 dB. In this paper, experimental schemes and results using the SRL as a universal photonic digital element to form all-optical logic, memory, and signal processing circuits are summarized. It is demonstrated that the SRL can be used for both combinatorial and sequential logic functions, and as all-optical regeneration devices. Furthermore, it is shown that a SRL logic circuit can be all-optically reconfigured to perform different all-optical logic functions.  相似文献   

6.
Multiplexer and De-multiplexer operation play a very important role in all-optical computation, communication and control. Considerable number of multiplexing – de-multiplexing scheme in digital optical processing have already been reported. A design of all-optical ternary Multiplexer De-multiplexer circuit with optical nonlinear material (OPNLM) based switch is proposed and described in this paper. Different logic states have been represented by different polarization states of light. Logical simulation is also included here. This circuit will be useful in future all-optical multi-valued logic based computing and information processing system.  相似文献   

7.
Photon being the ultimate unit of information with unmatched speed and with data package in a signal of zero mass, the techniques of computing with light may provide a way out of the limitations of computational speed and complexity inherent in electronics computing. Information processing with photon as information carrying signal has shown a high level potentiality through the researches in last few decades. The driving force behind this evolution has been the utilization of interferometric configurations that employ a semiconductor optical amplifier (SOA) as the nonlinear element in combination with cross-phase modulation to achieve switching by means of light. Here, in this paper we present an all-optical circuit of programmable logic device (PLD) with the help of SOA-MZI (Mach-Zehnder interferometer) based optical tree-structured splitter. Numerical simulation result confirming described method is reported here. This paper also explains the applicability of this scheme to perform logical and arithmetic operations in all-optical domain.  相似文献   

8.
Tanay Chattopadhyay 《Optik》2010,121(7):617-622
Multi-valued logic can be viewed as an alternative approach to solving many problems in transmission, storage and processing of large amount of information in digital signal processing. For the first time to our knowledge, the principal of possibilities of design of all-optical quaternary multi-valued literals circuit (truncated sum, truncated difference and down literals) are proposed and described. Here the different quaternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch can take an important role here. Computer simulation result (by Mathcad-7.0) confirming described methods and conclusion are given in this paper.  相似文献   

9.
光致异构全光逻辑门理论与实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李燕明  陈理想  佘卫龙 《物理学报》2007,56(10):5895-5902
基于双光抽运探测模型,利用偶氮苯聚合物光致异构和光致双折射效应,建立了全光逻辑门的理论分析模型,提出了一种新颖的全光逻辑门设计方案.该方案基于输入抽运光和信号光的强度或偏振态,设计了“与”门、“或”门、“异或”门和“异或非”门等基本功能的全光逻辑门.以掺杂分散红1(DR1)的聚甲基丙烯酸甲酯(PMMA)薄膜为样品进行实验,得到了比较好的逻辑门运算实验结果,与理论分析相符合.  相似文献   

10.
高速全光逻辑门是实现光分组交换、光计算和未来高速大容量光传输的关键器件,近年来受到广泛的关注。半导体光放大器(SOA)因为具备体积小、工作波长范围宽、响应时间短及良好的非线性特性等优点,成为研制高速全光逻辑器件的首选。采用分段模型分析了SOA的稳态增益饱和特性,通过数值求解载流子速率方程和光传输方程对其特性进行了仿真实现。结果表明,SOA在入射光功率不同时会表现出明显的非线性;在一定范围内增加光功率,SOA增益持续增加,继续增加入射光功率,SOA逐渐进入饱和吸收状态,增益反而降低。  相似文献   

11.
实验研究了掺锡As2S8条波导的光阻断效应,提出一种新型的基于掺锡As2S8波导的全光逻辑门方案,并试制了掺锡As2S8条波导全光逻辑门,实验结果显示该逻辑门具有良好的波形特性,表明该材料适合做全光逻辑门,具有一定的应用潜力.  相似文献   

12.
全光逻辑门是全光计算以及全光信号处理系统中关键的光子器件.随着互补金属氧化物半导体(COMS)工艺的发展,基于半导体材料微纳波导全光逻辑门已经成为集成光学领域中的重要方向;尤其是硅基光子集成器件在近些年成为了国际研究热点.文章主要对基于绝缘体上的硅(SOD)和Ⅲ-Ⅴ族化合物材料不同波导结构(马赫-曾德尔干涉仪(Mach-Zehnder interferometer)微环谐振腔和条形波导结构)的全光逻辑门的研究进展进行了介绍,并且在器件的工作速率和功耗方面,分别对上述基于SOI和Ⅲ-Ⅴ族化合物材料三种不同波导结构的全光逻辑门进行了分析和比较.  相似文献   

13.
A. Kotb  S. Ma  N.K. Dutta 《Optics Communications》2011,284(24):5798-5803
The performances of all-optical logic gates XOR, AND, OR, NOR and NAND based on semiconductor optical amplifier (SOA) have been simulated including the effects of amplified spontaneous emission (ASE). For the parameters used, all-optical logic gates using SOA are capable of operating at speed of 80 Gb/s.  相似文献   

14.
An all-optical scheme for simultaneously realizing OR and AND logic gates based on three-input four-wave mixing (FWM) arising in a single semiconductor optical amplifier (SOA) is proposed and demonstrated. It has the ability to process not only conventional non-return-to-zero-ON-OFF-keying (NRZ-OOK) and return-to-zero-OOK (RZ-OOK) formats but also carrier-suppressed return-to-zero-OOK (CSRZ-OOK) format signals. Firstly, the performance of 40 Gb/s logic operation is numerically evaluated by a comprehensive dynamic SOA model considering three input signal induced FWM effect. Then, 10 Gb/s experimental demonstrations with clear waveforms and high extinction ratios (ERs) further verify the logic integrity of this scheme. Thus, the OR and AND logic gates simultaneously achieved within a single logic unit is compact and cost-effective for future optical signal processing applications.  相似文献   

15.
王颖  张新亮  黄德修 《中国物理》2004,13(6):882-886
All-optical XOR and NOT logic operations based on semiconductor optical amplifier loop mirror (SLALOM) aresimultaneously demonstrated theoretically and experimentally. Based on a segmented semiconductor optical amplifier model, the all-optical logic operation process is simulated theoretically. In an experimental study, 2.5 Gb/s all-optical XOR operation was achieved in the output port of SLALOM, while all-optical NOT operation was achieved in the input port through a circulator at the same time.  相似文献   

16.
提出了一种新型的基于非线性光纤环镜(NOLM)的可重构全光逻辑门实现方案。传统的基于NOLM的全光逻辑利用自相位调制效应或交叉相位调制效应,透射传输函数重构的自由度低,可实现的逻辑门种类较少。该方案在传统的结构基础上,分析了NOLM中探测光的偏振态的演化,以及输入光偏振态和环内偏振控制器对NOLM的传输特性的影响。理论分析和数值仿真结果表明在考虑NOLM中的非线性偏振旋转效应的情况下,可以更加自由地构建不同透射传输函数,从而利用单一NOLM结构,仅通过调节偏振控制器,即能够可重构地实现绝大部分基础组合逻辑。实验中,完成了两路40Gb/s的数据信号之间的"非"、"与"、"或"、"或非"、"同或"、"异或"等各种基础组合逻辑,验证了方案的可行性。  相似文献   

17.
Jitendra Nath Roy 《Optik》2009,120(7):318-324
Interferometric devices for optical processing have been of great interest in recent years. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) has already taken a significant role in the field of ultra-fast all-optical signal processing. Optical tree architecture (OTA) provides important contributions in optical interconnecting networks. In this communication, we have tried to exploit the advantages of both OTA and SOA-based MZI switches. We have proposed SOA-MZI-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations. This architecture can enable one to perform all-optical processing of signals, including two input logic operations, half-adder, full-adder, full-subtractor, one-bit data comparator, etc.  相似文献   

18.
提出了一种新型的基于半导体光纤环形腔激光器(SFRL)中同时发生的四波混频效应和交叉增益调制效应同时实现全光AND门和NOR门方案,并建立了这种全光逻辑门完整的宽带理论模型.通过数值模拟的方法,研究了输入信号光峰值功率及SFRL中两个耦合器的耦合比对这种全光逻辑门输出特性的影响. 关键词: 半导体光纤环形腔激光器 全光逻辑门 四波混频 交叉增益调制  相似文献   

19.
颜森林 《物理学报》2013,62(23):230504-230504
提出多量子阱激光器混沌“主-从-响应”式结构同步系统,研究其并联同步在光学逻辑门中的应用. 利用一个注入多量子阱激光器混沌系统注入驱动实现了两个响应多量子阱激光系统的混沌并联同步,同时还获得了“主-从”式结构的混沌同步. 基于响应子系统的混沌并联同步思想,提出了全光逻辑门的基本理论模型并定义了计算原则与方法. 利用光的外部调制方法对两个驱动光进行调制与控制,让两个响应子系统实现同步与非同步,使系统获得了并具有全光逻辑门函数功能与特点,并成功地进行了数字逻辑计算. 具体提出了全光XNOR、NOR、NOT等逻辑门及逻辑计算方法,数值模拟结果证明了系统方案的可行性. 关键词: 混沌 同步 逻辑门 多量子激光器  相似文献   

20.
Bijan Ghosh  Radha Raman Pal 《Optik》2011,122(20):1804-1807
Semiconductor optical amplifier (SOA) has already been established itself as a strong all-optical switching element for conducting super fast optical operations. Many all optical logic operations have been proposed by the use of SOA. Here in this paper the authors proposed a new method of implementing all-optical frequency encoded logic operations and half-adder by the use of SOA as well as Mach Zehnder interferometer. The advantage of frequency encoding has been strongly exploited here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号