首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the synchronization of complex systems with delay that are impulsively coupled at discrete instants only. Based on the comparison theorem of impulsive differential system, a distributed impulsive control scheme is proposed to achieve the synchronization for systems with delay. In the control strategy, the influence of all nodes to network synchronization relies on its weight. The proposed control scheme is applied to the chaotic delayed Hopfield neural networks and numerical simulations are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

2.
This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme.  相似文献   

3.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

4.
曾长燕  孙梅  田立新 《物理学报》2010,59(8):5288-5292
最近,对时变延迟网络的脉冲稳定性的研究大量出现,但通过自适应-脉冲控制方法获得的时变延迟网络同步准则却很少.本文中,运用自适应-脉冲控制方法,设计自适应反馈控制器、自适应律和线性脉冲控制器,研究时变耦合部分线性系统驱动-响应复杂网络的投影同步.获得时变耦合网络的自适应-脉冲投影同步准则.并且不需要网络的耦合构造矩阵是不可约的.另外,运用数值模拟证实方案的有效性和可行性.  相似文献   

5.
Jin Zhou  Lan Xiang 《Physica A》2007,384(2):684-692
The present paper is mainly concerned with the issues of synchronization dynamics of complex delayed dynamical networks with impulsive effects. A general model of complex delayed dynamical networks with impulsive effects is formulated, which can well describe practical architectures of more realistic complex networks related to impulsive effects. Based on impulsive stability theory on delayed dynamical systems, some simple but less conservative criterion are derived for global synchronization of such dynamical network. It is shown that synchronization of the networks is heavily dependent on impulsive effects of connecting configuration in the networks. Furthermore, the theoretical results are applied to a typical SF network composing of impulsive coupled chaotic delayed Hopfield neural network nodes, and are also illustrated by numerical simulations.  相似文献   

6.
In this Letter, exponential synchronization of a complex network with nonidentical time-delayed dynamical nodes is considered. Two effective control schemes are proposed to drive the network to synchronize globally exponentially onto any smooth goal dynamics. By applying open-loop control to all nodes and adding some intermittent controllers to partial nodes, some simple criteria for exponential synchronization of such network are established. Meanwhile, a pinning scheme deciding which nodes need to be pinned and a simply approximate formula for estimating the least number of pinned nodes are also provided. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network with nonidentical time-delayed dynamical nodes, and an estimate of the upper bound of impulsive intervals ensuring global exponential stability of the synchronization process is also given. Numerical simulations are presented finally to demonstrate the effectiveness of the theoretical results.  相似文献   

7.
This paper investigates the synchronization scheme of coupled neural networks with time delays. The coupling function, which can be linear or nonlinear, is subject to uncertainties in the network. By utilizing the stability theory for impulsive functional differential equations, several new criteria are obtained to ensure the robust synchronization of coupled networks via impulsive control. Furthermore, an estimation of the predicted stable region is derived to facilitate the design of the control gain. Finally, numerical simulations are presented to demonstrate the effectiveness of our results.  相似文献   

8.
This Letter investigates the synchronization problem of a complex network with nonidentical nodes, and proposes two effective control schemes to synchronize the network onto any smooth goal dynamics. By applying open-loop control to all nodes and placing adaptive feedback injections on a small fraction of network nodes, a low-dimensional sufficient condition is derived to guarantee the global synchronization of the complex network with nonidentical nodes. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network composed of nonidentical nodes, and an upper bound of impulsive intervals is estimated to ensure the global stability of the synchronization process. Numerical simulations are given to verify the theoretical results.  相似文献   

9.
冷卉  吴召艳 《中国物理 B》2016,25(11):110501-110501
Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations.A community network with distributed time delays is investigated in this paper.For achieving cluster synchronization,an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks.Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions,some synchronization criteria with respect to the impulsive gains,instants,and system parameters without adaptive strategy are obtained and generalized to the adaptive case.Finally,numerical examples are presented to demonstrate the effectiveness of the theoretical results.  相似文献   

10.
In this paper, we investigate the problem of synchronization for the time varying delayed complex dynamical networks via impulsive control method, several sufficient synchronization conditions are given, and we consider the impulsive control matrices are time varying delayed matrices. Furthermore, we found impulsive control does not always play an active role in synchronization although impulsive control strategy is cheaper and simpler than other control strategy. Finally, numerical simulations are also given to demonstrate the effectiveness of the proposed schemes.  相似文献   

11.
This Letter investigates cluster synchronization in the adaptive complex dynamical networks with nonidentical nodes by a local control method and a novel adaptive strategy for the coupling strengths of the networks. In this approach, the coupling strength of each node adjusts adaptively only based on the state information of its neighborhood. By means of the proposed scheme, the sufficient conditions for achieving cluster synchronization are derived analytically by utilizing Lyapunov stability theory. It is demonstrated that the synchronization performance is sensitively affected by the control gain, the inner-coupling matrix and the network topological structure. The numerical simulations are performed to verify the effectiveness of the theoretical results.  相似文献   

12.
In this Letter, the problem of impulsive synchronization of two identical Lur'e systems via partial states is studied. The problem arises in the situation when only partial states of the driven systems are available. By using the method of the variation of parameters for linear impulsive systems and some analysis technique, a sufficient condition for the existence of the impulsive control law for synchronization via partial states is derived. The sufficient condition is given in terms of linear matrix inequalities concerning the interconnection matrices. By using this result, we propose a new impulsive synchronization scheme for a class of Lur'e systems. The new impulsive synchronization scheme only exerts the impulsive input on partial states of the driven system and is characterized by a set of conditions related to the impulsive interval bound, the impulsive magnitude and a coupling condition between them. The proposed impulsive synchronization method is illustrated through Chua's circuit.  相似文献   

13.
韩敏  张雅美  张檬 《物理学报》2015,64(7):70506-070506
针对同时具有节点时滞和耦合时滞的时变耦合复杂网络的外同步问题, 提出一种简单有效的自适应牵制控制方法. 首先构建一种贴近实际的驱动-响应复杂网络模型, 在模型中引入双重时滞和时变不对称外部耦合矩阵. 进一步设计易于实现的自适应牵制控制器, 对网络中的一部分关键节点进行控制. 构造适当的Lyapunov泛函, 利用 LaSalle不变集原理和线性矩阵不等式, 给出两个复杂网络实现外同步的充分条件. 最后, 仿真结果表明所提同步方法的有效性, 同时揭示耦合时滞对同步收敛速度的影响.  相似文献   

14.
王树国  姚洪兴 《中国物理 B》2011,20(9):90513-090513
In this paper, we investigate the impulsive synchronization between two coupled complex networks with time-delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive control theories, the linear feedback and the impulsive controllers are designed separately. By using the generalized Barbalat's lemma, the global asymptotic impulsive synchronization of the drive—response complex networks is derived and some corresponding sufficient conditions are also obtained. Numerical examples are presented to verify the effectiveness and the correctness of the synchronization criteria.  相似文献   

15.
唐漾  黃偉強  方建安  苗清影 《中国物理 B》2011,20(4):40513-040513
In this paper,the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller,where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller,some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.  相似文献   

16.
In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.  相似文献   

17.
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.  相似文献   

18.
In this paper,cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated.Community networks with two kinds of topological structure are investigated.Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization.Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers.Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory,several simple and useful synchronization criteria are derived.Finally,numerical simulations are provided to verify the effectiveness of the derived results.  相似文献   

19.
李阳  廖晓峰  李传东  陈果 《中国物理》2006,15(12):2890-2893
This paper reports that an impulsive control theory for synchronization of nonlinear R?ssler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronization law. The proposed impulsive control scheme is illustrated by nonlinear R?ssler chaotic systems and the simulation results demonstrate the effectiveness of the method.  相似文献   

20.
K. Li  C.H. Lai 《Physics letters. A》2008,372(10):1601-1606
This Letter studies adaptive-impulsive synchronization of uncertain complex dynamical networks. Based on the stability analysis of impulsive system, several network synchronization criteria for local and global adaptive-impulsive synchronization are established. Numerical example is also given to illustrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号