首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Rationale and Objectives

To compare the apparent diffusion coefficient (ADC) and the perfusion fraction measured by intra-voxel incoherent motion (IVIM) Magnetic Resonance Imaging (MRI) with liver fibrosis degrees in a rodent model.

Materials and Methods

All experiments received approval from our institutional animal care and use committee. Liver fibrosis was induced in 13 rats by oral gavage with diethylnitrosamine; 4 untreated rats with normal livers were used as controls. Diffusion Weighted MRI was performed and 8 gradient factors (0, 50, 100, 150, 200, 300, 400 and 500 s/mm2) were acquired. The values of ADC, true diffusion coefficient D and perfusion fraction f were measured based on Li Bihan’s method. The percentage of liver fibrosis was assessed via quantitative analysis of Masson trichrome staining using an average of 30 fields per section. The MRI measurements were compared to the histological fibrotic grade to evaluate the correlation between them.

Results

ADC contained the contribution of diffusion and perfusion. The ADC and f values decreased significantly with the increasing fibrosis level (correlation coefficient: ADC: ρ = − 0.781, p < 0.001; f: ρ = − 0.720, p = 0.001); but D was poorly correlated with fibrosis level (ρ = − 0.502, p = 0.040).

Conclusion

The hepatic ADC and the perfusion fraction f were significantly correlated with the liver fibrosis level; however, D was not. This might suggest that hepatic perfusion is altered during the progression of hepatic fibrosis.  相似文献   

2.

Objective

To evaluate the correlation between findings from diffusion weighted imaging (DWI) and microvascular density (MVD) measurements in VX2 liver tumors after transarterial embolization ablation (TEA).

Materials and Methods

Eighteen New Zealand white rabbits were used in this study. VX2 tumor cells were implanted in livers by percutaneous puncture under computed tomography (CT) guidance. Two weeks later, all rabbits underwent conventional magnetic resonance imaging (MRI) (T1 and T2 imaging), DWI, (b = 100, 600, and 1000 s/mm2) and TEA. MRI was performed again1 week after TEA. Liver tissue was then harvested and processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31to determine MVD.

Results

VX2 liver tumors were successfully established in all 18 rabbits. Optimal contrast was achieved with a b value of 600 s/mm2.The maximum pre-operative apparent diffusion coefficient (ADC)difference value was 0.28 × 10− 3 ± 0.10 × 10− 3 mm2/s, and was significantly different (P < 0.001) from the maximum postoperative ADCdifference value of 0.47 × 10− 3 ± 0.10 × 10− 3 mm2/s. However, the mean ADC value for the entire tumor was not significantly correlated with MVD (r = 0.221, P = 0.379), nor was the ADC value for the regions of viable tumor (r = − 0.044, P = 0.862). However, the maximum postoperative ADCdifference value was positively correlated with MVD(r = 0.606, F = 12.247, P = 0.003).

Conclusion

DWI is effective to evaluate the therapeutic efficacy of TEA. The maximum ADCdifference offers a promising new method to noninvasively assess tumor angiogenesis.  相似文献   

3.

Background

The goal of the study was to assess a T2*-weighted MRI sequence for the ability to identify hepatocellular carcinoma (HCC).

Methods

Hepatic iron deposition, which is common in chronic liver disease (CLD), may increase the conspicuity of HCC on GRE imaging due to increased T2* signal decay in liver parenchyma. In this study, a breath-hold T2*-weighted MRI sequence was evaluated by a blinded observer for HCC and the results compared to a reference standard of gadolinium-enhanced MRI in these same patients. Forty-one patients (mean age 56.2 years; 17 females) were included in this approved, retrospective study.

Results

By the reference standard, 14 of 41 patients had a total of 25 HCCs. The sensitivity of the T2*-weighted MR sequence for identifying HCC, per lesion, was 60%, while the specificity was 100%. There was a significantly lower T2* value of liver parenchyma in patients with HCC identified by the T2*-weighted sequence than in those with HCCs which were not identified by the T2*-weighted sequence (27.8±2.2 vs. 21.9±2.1 ms; P=.02).

Conclusions

A T2*-weighted MRI sequence can identify HCC in patients with CLD. This technique may be beneficial for imaging of patients contraindicated for gadolinium.  相似文献   

4.

Purpose

To evaluate which mathematical model (monoexponential, biexponential, statistical, kurtosis) fits best to the diffusion-weighted signal in prostate magnetic resonance imaging (MRI).

Materials and Methods

24 prostate 3-T MRI examinations of young volunteers (YV, n= 8), patients with biopsy proven prostate cancer (PC, n= 8) and an aged matched control group (AC, n= 8) were included. Diffusion-weighted imaging was performed using 11 b-values ranging from 0 to 800 s/mm2.

Results

Monoexponential apparent diffusion coefficient (ADC) values were significantly (P<.001) lower in the peripheral (PZ) zone (1.18±0.16 mm2/s) and the central (CZ) zone (0.73±0.13 mm2/s) of YV compared to AC (PZ 1.92±0.17 mm2/s; CZ 1.35±0.21 mm2/s). In PC ADCmono values (0.61±0.06 mm2/s) were significantly (P<.001) lower than in the peripheral of central zone of AC. Using the statistical analysis (Akaike information criteria) in YV most pixels were best described by the biexponential model (82%), the statistical model, respectively kurtosis (93%) each compared to the monoexponential model. In PC the majority of pixels was best described by the monoexponential model (57%) compared to the biexponential model.

Conclusion

Although a more complex model might provide a better fitting when multiple b-values are used, the monoexponential analyses for ADC calculation in prostate MRI is sufficient to discriminate prostate cancer from normal tissue using b-values ranging from 0 to 800 s/mm2.  相似文献   

5.

Purpose

To investigate the feasibility of combining GESFIDE with PROPELLER sampling approaches for simultaneous abdominal R2 and R2* mapping.

Materials and Methods

R2 and R2* measurements were performed in 9 healthy volunteers and phantoms using the GESFIDE-PROPELLER and the conventional Cartesian-sampling GESFIDE approaches.

Results

Images acquired with the GESFIDE-PROPELLER sequence effectively mitigated the respiratory motion artifacts, which were clearly evident in the images acquired using the conventional GESFIDE approach. There was no significant difference between GESFIDE-PROPELLER and reference MGRE R2* measurements (p = 0.162) whereas the Cartesian-sampling based GESFIDE methods significantly overestimated R2* values compared to MGRE measurements (p < 0.001).

Conclusion

The GESFIDE-PROPELLER sequence provided high quality images and accurate abdominal R2 and R2* maps while avoiding the motion artifacts common to the conventional Cartesian-sampling GESFIDE approaches.  相似文献   

6.

Purpose

The purpose of the study was to determine significant imaging features to differentiate between infiltrative hepatocellular carcinoma (HCC) and confluent fibrosis (CF) in liver cirrhosis using Gd-EOB-DTPA-enhanced 3-T magnetic resonance imaging.

Material and methods

Nineteen infiltrative HCCs and eight CFs were included. We evaluated the difference in imaging findings and apparent diffusion coefficient (ADC) between the two entities. We compared T2-weighted image (WI) and hepatobiliary phase (HBP) in terms of the clarity of the lesion outer margin.

Results

Seventeen infiltrative HCCs showed lobulated margin, while focal CFs showed either straight (n = 3) or irregular margins (n = 5) (P = .001). All infiltrative HCCs had intact or bulging contours, and all focal CFs showed capsular retraction (P = .001). Fourteen infiltrative HCCs and two focal CFs showed arterial enhancement (P = .035). The ADC of infiltrative HCCs was significantly lower than that of CFs (P = .001). Satellite nodules were noted in 10 infiltrative HCCs. In terms of outer margin clarity, infiltrative HCCs showed a more distinct margin on HBP than on T2-WI (P = .005), while these two sequences were not significantly different in focal CFs (P = 1.000).

Conclusion

HBP improved the imaging characteristics of infiltrative HCC, allowing it to be distinguished from focal CF. Infiltrative HCC showed lower ADC values than focal CF. Lobular configuration, contour bulging, enhancement pattern, associated satellite nodules and portal vein thrombosis were still found to be highly suggestive MR findings for infiltrative HCC.  相似文献   

7.

Purpose

The aim of this study was to determine the adequate MR sequence for the lesion conspicuity of hepatocellular lesions with increased iron uptake on superparamagnetic iron oxide (SPIO)-enhanced MRI.

Materials and Methods

SPIO-enhanced MRI was performed using a 1.5-T system. Among 25 patients with hypovascular hepatocellular nodules on contrast-enhanced dynamic CT (no early enhancement at arterial phase and hypoattenuation at equilibrium phase), 39 lesions with increased iron uptake on SPIO-enhanced MRI were evaluated. SPIO-enhanced MRI included (1) T1-weighted in-phase gradient recalled echo (GRE) images, (2) T2-weighted fast spin echo (FSE) images, (3) T2*-weighted GRE with moderate TE (7 ms) and (4) long TE (12 ms). The lesion-to-liver contrast-to-noise ratios of the hepatocellular nodule and the signal-to-noise ratio (SNR) of the hepatic parenchyma were calculated by one radiologist for a quantitative assessment. MR images were reviewed retrospectively by two independent radiologists to compare the subjective lesion conspicuity in each image set based on a four-point rating scale.

Result

The mean lesion-to-liver contrast-to-noise ratios with T2*-weighted GRE with moderate TE (7 ms) was highest (5.79±3.71) and was significantly higher than those with T1-weighted, in-phase images (3.79±3.23, P<.01), T2-weighted images (2.72±1.52, P<.001) and T2*-weighted GRE with long TE (12 ms) (3.93±2.69, P<.05). The subjective rating of lesion conspicuity was best on the T2*-weighted GRE with moderate TE (7 ms), followed by that on the T2*-weighted GRE with moderate TE (7 ms; P<.05).

Conclusion

T2*-weighted GRE sequence with moderate TE (7 ms) showed high lesion-to-liver contrast-to-noise ratios in hepatocellular lesions with increased iron uptake on SPIO-enhanced MRI, indicating better lesion conspicuity of hypointense hepatocellular nodules in cirrhosis or chronic hepatitis.  相似文献   

8.

Purpose

To visualize liver uptake function using the uptake contrast-enhanced ratio in hepatobiliary phase (uptake CERH) magnetic resonance imaging.

Materials and methods

Thirty-seven patients with hepatocellular carcinoma (HCC) and 23 with metastatic liver cancer were evaluated. Hepatobiliary phase images were acquired 20 min after an intravenous bolus injection of gadoxetic acid disodium. We assumed that the contrast-enhanced ratio in the hepatobiliary phase (CERH) in the spleen was similar to the contrast-enhanced ratio in the extracellular matrix (CEREM). The Uptake CERH value was defined as the percentage signal gain between the precontrast and hepatobiliary phase images (without CEREM). The Uptake CERH value measured the tumor-free liver parenchyma. The association of the uptake CERH value with the biochemical liver function test results, and hepatocellular density in the liver parenchyma was assessed. Correlations were examined using Pearson correlation coefficient and the Mann–Whitney test.

Results

The uptake CERH value was correlated with albumin, bilirubin, indocyanine green retention rate at 15 min, prothrombin activity(%), platelet count, and cellular density in the liver parenchyma (p < 0.01).

Conclusions

Uptake CERH images are useful for visualizing liver uptake function.  相似文献   

9.

Introduction

Diffusion tensor imaging (DTI) measures in patients with multiple sclerosis (MS), particularly those measures associated with a specific white matter pathway, have consistently shown correlations with function. This study sought to investigate correlations between DTI measures in the fornix and common cognitive deficits in MS patients, including episodic memory, working memory and attention.

Materials and Methods

Patients with MS and group age- and sex-matched controls underwent high-resolution diffusion scanning (1-mm isotropic voxels) and cognitive testing. Manually drawn forniceal regions of interest were applied to individual maps of tensor-derived measures, and mean values of transverse diffusivity (TD), mean diffusivity (MD), longitudinal diffusivity (LD) and fractional anisotropy (FA) were calculated.

Results

In 40 patients with MS [mean age±S.D.= 42.55±9.1 years; Expanded Disability Status Scale (EDSS)=2.0±1.2; Multiple Sclerosis Functional Composite (MSFC) score=0.38±0.46] and 20 healthy controls (mean age±S.D.= 41.35±9.7 years; EDSS=0.0±0; MSFC score=0.74±0.24), we found that FA, MD and TD values in the fornix were significantly different between groups (P< .03), and patient performance on the Brief Visuospatial Memory Test-Revised (BVMT-R) was correlated with DTI measures (P< .03).

Discussion

These results are consistent with findings of axonal degeneration in MS and support the use of DTI as an indicator of disease progression.  相似文献   

10.

Purpose

To evaluate the semiquantitative DCE and quantitative DWI parameters in endometrial cancer, in order to assess the presence of neoplastic tissue and normal myometrium and to ascertain a potential relationship with tumor grade.

Methods and materials

A total of 57 patients with biopsy-proven endometrial adenocarcinoma who underwent MR imaging examination for staging purposes were retrospectively evaluated. Imaging protocol included multiplanar T1- and T2-weighted TSE, DCE T1-weighted (THRIVE; 0, 30, 90 and 120 seconds after intravenous injection of gadolinium) and DWIBS sequences (b values = 0 and 1000 mm2/s). Color perfusion and ADC maps were automatically generated on dedicated software. Relative enhancement (RE, %), maximum enhancement (ME, %), maximum relative enhancement (MRE, %), time to peak (TTP, s) and mean apparent diffusion coefficient (ADC) were calculated by manually drawing a region of interest (ROI) both on the neoplastic tissue and the normal myometrium. Histopathology was used as reference standard.

Results

Histopathological analysis confirmed the presence of endometrial carcinoma in all patients. Neoplastic tissue demonstrated significantly lower (P < 0.001) values of RE (%) 63.92 ± 35.68; ME (%) 864.91 ± 429.54 and MRE (%) 75.97 ± 38.26 as compared to normal myometrium (RE (%) 151.43 ± 55.99; ME (%) 1800.73 ± 721.32; MRE (%) 158.28 ± 54.05). TTP was significantly higher (P < 0.05) in tumor lesion (385.51 ± 1630.27 vs 195.44 ± 78.69). Mean ADC value of neoplastic tissue (775.09 ± ?220.73 × 10− 3 mm2/s) was significantly lower (P < 0.05) than in myometrium (1602.37 ± 378.54 × 10− 3 mm2/s). The analysis of perfusion and diffusion parameters classified according to tumor grades, showed a statistically significant difference only for RE (P = 0.043) and ME (P = 0.007).

Conclusions

Perfusion parameters and mean ADC differ significantly between endometrial cancer and normal myometrium, potentially reflecting the different microscopical features of cellularity and vascularity; however a significant relationship with tumor grade was not found in our series.  相似文献   

11.

Purpose

To assess the value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) for the pre-therapeutic detection of hepatocellular carcinoma (HCC) using receiver operating characteristic (ROC) analysis with the combination of computed tomography (CT) arterial portography and CT hepatic arteriography (CTAP/CTHA).

Materials and Methods

A total of 54 consecutive patients with 87 nodular HCCs were retrospectively analyzed. All HCC nodules were confirmed pathologically. Three blinded readers independently reviewed 432 hepatic segments, including 78 segments with 87 HCCs. Each reader read two sets of images: Set 1, CTAP/CTHA; Set 2, gadoxetic acid-enhanced MRI including a gradient dual-echo sequence and diffusion-weighted imaging (DWI). The ROC method was used to analyze the results. The sensitivity, specificity, positive predictive value, negative predictive value and sensitivity according to tumor size were evaluated.

Results

For each reader, the area under the curve was significantly higher for Set 2 than for Set 1. The mean area under the curve was also significantly greater for Set 2 than for Set 1 (area under the curve, 0.98 vs. 0.93; P = .0009). The sensitivity was significantly higher for Set 2 than for Set 1 for all three readers (P = .012, .013 and .039, respectively). The difference in the specificity, positive predictive values and negative predictive values of the two modalities for each reader was not significant (P > .05).

Conclusion

Gadoxetic acid-enhanced MRI including a gradient dual-echo sequence and DWI is recommended for the pre-therapeutic evaluation of patients with HCC.  相似文献   

12.

Background and purpose

The use of diffusion-weighted magnetic resonance imaging (DW-MRI) as a surrogate biomarker of response in preclinical studies is increasing. However, before a biomarker can be reliably employed to assess treatment response, the reproducibility of the technique must be established. There is a paucity of literature that quantifies the reproducibility of DW-MRI in preclinical studies; thus, the purpose of this study was to investigate DW-MRI reproducibility in a murine model of HER2 + breast cancer.

Materials and methods

Test–Retest DW-MRI scans separated by approximately six hours were acquired from eleven athymic female mice with HER2 + xenografts using a pulsed gradient spin echo diffusion-weighted sequence with three b values [150, 500, and 800 s/mm2]. Reproducibility was assessed for the mean apparent diffusion coefficient (ADC) from tumor and muscle tissue regions.

Results

The threshold to reflect a change in tumor physiology in a cohort of mice is defined by the 95% confidence interval (CI), which was ± 0.0972 × 10- 3 mm2/s (± 11.8%) for mean tumor ADC. The repeatability coefficient defines this threshold for an individual mouse, which was ± 0.273 × 10- 3 mm2/s. The 95% CI and repeatability coefficient for mean ADC of muscle tissue were ± 0.0949 × 10- 3 mm2/s (± 8.30%) and ± 0.266 × 10- 3 mm2/s, respectively.

Conclusions

Mean ADC of tumors is reproducible and appropriate for detecting treatment-induced changes on both an individual and mouse cohort basis.  相似文献   

13.

Purpose

To determine whether gadolinium ethoxybenzyldiethylenetriaminepentaacetic acid (Gd-EOB-DTPA) administration affects hepatic fat quantification by magnetic resonance spectroscopy (MRS) using the fast breath-hold high-speed T2-corrected multiecho (HISTO) technique.

Materials and Methods

Seventy-six patients underwent Gd-EOB-DTPA-enhanced liver MR and 15 sec breath-hold HISTO MRS (4 times), twice before and twice after Gd-EOB-DTPA administration. Two consecutive MRSs were performed immediately before the dynamic study. Post-contrast MRS was performed twice continuously, approximately 15 min after contrast injection, prior to obtaining 20-min hepatobiliary phase images. We used paired t-test and intraclass correlation coefficient (ICC) to evaluate the variability of the mean fat fraction (FF) on pre-contrast MRS and post-contrast MRS and the effect of the contrast agent on the mean FF.

Results

The mean FFs were not significantly different between pre-contrast MRS and post-contrast MRS (6.50% ± 6.54 versus 6.70% ± 6.61, P = 0.15). The ICC of FF calculation between pre- and post-contrast MRS was 0.984. The ICCs for the FF magnitude between pre- and post-contrast MRS were 0.452, 0.771, and 0.995 for FF < 5%, FF 5–10%, and FF ≥ 10%, respectively.

Conclusion

Gd-EOB-DTPA does not appear to influence hepatic fat quantification, especially for patients with hepatic steatosis.  相似文献   

14.

Objectives

The purpose of this study was to (a) investigate the image quality of phase-sensitive dual-inversion recovery (PS-DIR) coronary wall imaging in healthy subjects and in subjects with known coronary artery disease (CAD) and to (b) investigate the utilization of PS-DIR at 3 T in the assessment of coronary artery thickening in subjects with asymptomatic but variable degrees of CAD.

Materials and Methods

A total of 37 subjects participated in this institutional review board-approved and HIPAA-compliant study. These included 21 subjects with known CAD as identified on multidetector computed tomography angiography (MDCT). Sixteen healthy subjects without known history of CAD were included. All subjects were scanned using free-breathing PS-DIR magnetic resonance imaging (MRI) for the assessment of coronary wall thickness at 3 T. Lumen–tissue contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative vessel parameters including lumen area and wall thickness were measured. Statistical analyses were performed.

Results

PS-DIR was successfully completed in 76% of patients and in 88% of the healthy subjects. Phase-sensitive signed-magnitude reconstruction, compared to modulus-magnitude images, significantly improved lumen–tissue CNR in healthy subjects (26.73 ± 11.95 vs. 14.65 ± 9.57, P < .001) and in patients (21.45 ± 7.61 vs. 16.65 ± 5.85, P < .001). There was no difference in image CNR and SNR between groups. In arterial segments free of plaques, coronary wall was thicker in patients in comparison to healthy subjects (1.74 ± 0.27 mm vs. 1.17 ± 0.14 mm, P < .001), without a change in lumen area (4.51 ± 2.42 mm2 vs. 5.71 ± 3.11 mm2, P = .25).

Conclusions

This is the first study to demonstrate the feasibility of successfully obtaining vessel wall images at 3 T using PS-DIR in asymptomatic patients with known variable degrees of CAD as detected by MDCT. This was achieved with a fixed subject-invariant planning of blood signal nulling. With that limitation alleviated, PS-DIR coronary wall MRI is capable of detecting arterial thickening and positive arterial remodeling at 3 T in asymptomatic CAD.  相似文献   

15.

Object

To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg–Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data.

Materials and Methods

MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction.

Results

The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC = 0.60 ± 0.09 (10− 3 mm2/s), D* = 28 ± 9 (10− 3 mm2/s) and perfusion fraction = 14% ± 6%. The values obtained by the LM bi-exponential fit were: ADC = 0.45 ± 0.27 (10− 3 mm2/s), D* = 63 ± 145 (10− 3 mm2/s) and perfusion fraction = 27% ± 17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis.

Conclusion

The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior.  相似文献   

16.

Introduction

We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI).

Methods

We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3 T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter.

Results

Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60 ± 0.18 vs. 0.73 ± 0.13, P = 0.0005, Wilcoxon’s signed rank test).

Conclusions

MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics.  相似文献   

17.

Purpose

The objective of this study was to compare multiple methods for estimation of PWV from 4D flow MRI velocity data and to investigate if 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time is sufficient to discern age-related regional differences in PWV.

Methods

4D flow MRI velocity data were acquired in 8 young and 8 older (age: 23 ± 2 vs. 58 ± 2 years old) normal volunteers. Travel-time and travel-distance were measured throughout the aorta and piecewise linear regression was used to measure global PWV in the descending aorta and regional PWV in three equally sized segments between the top of the aortic arch and the renal arteries. Six different methods for extracting travel-time were compared.

Results

Methods for estimation of travel-time that use information about the whole flow waveform systematically overestimate PWV when compared to methods restricted to the upslope-portion of the waveforms (p < 0.05). In terms of regional PWV, a significant interaction was found between age and location (p < 0.05). The age-related differences in regional PWV were greater in the proximal compared to distal descending aorta.

Conclusion

Care must be taken as different classes of methods for the estimation of travel-time produce different results. 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time can discern age-related differences in regional PWV well in line with previously reported data.  相似文献   

18.

Purpose

To evaluate the non-Gaussian water diffusion properties of prostate cancer (PCa) and determine the diagnostic performance of diffusion kurtosis (DK) imaging for distinguishing PCa from benign tissues within the peripheral zone (PZ), and assessing tumor lesions with different Gleason scores.

Materials and Methods

Nineteen patients who underwent diffusion weighted (DW) magnetic resonance imaging using multiple b-values and were pathologically confirmed with PCa were enrolled in this study. Apparent diffusion coefficient (ADC) was derived using a monoexponential model, while diffusion coefficient (D) and kurtosis (K) were determined using a DK model. Differences between the ADC, D and K values of benign PZ and PCa, as well as those of tumor lesions with Gleason scores of 6, 7 and ≥ 8 were assessed. Correlations between parameters D and K in PCa were analyzed using Pearson’s correlation coefficient. ADC, D and K values were correlated with Gleason scores of 6, 7 and ≥ 8, respectively.

Results

ADC and D values were significantly (p < 0.001) lower in PCa (0.79 ± 0.14 μm2/ms and 1.56 ± 0.23 μm2/ms, respectively) compared to benign PZ (1.23 ± 0.19 μm2/ms and 2.54 ± 0.24 μm2/ms, respectively). K values were significantly (p < 0.001) greater in PCa (0.96 ± 0.20) compared to benign PZ (0.59 ± 0.08). D and K showed fewer overlapping values between benign PZ and PCa compared to ADC. There was a strong negative correlation between D and K values in PCa (Pearson correlation coefficient r = − 0.729; p < 0.001). ADC and K values differed significantly in tumor lesions with Gleason scores of 6, 7 and ≥ 8 (p < 0.001 and p = 0.001, respectively), although no significant difference was detected for D values (p = 0.325). Significant correlations were found between the ADC value and Gleason score (r = − 0.828; p < 0.001), as well as the K value and Gleason score (r = 0.729; p < 0.001).

Conclusion

DK model may add value in PCa detection and diagnosis. K potentially offers a new metric for assessment of PCa.  相似文献   

19.

Purpose

The purpose of this study was to investigate the combined effect of hypertension and type 2 diabetes mellitus (DM2) on aortic stiffness and endothelial dysfunction by using an integrated MRI approach.

Materials and Methods

A total of 31 non-hypertensive DM2 patients and 31 hypertensive DM2 patients underwent 3.0-T MRI. Aortic distensibility (AD), pulse wave velocity (PWV) and brachial artery flow-mediated dilation (FMD) were assessed. Student's t-test, Mann–Whitney U test, chi-squared test, Pearson correlation analysis, and univariable and multiple linear regression analyses were used for statistical analyses.

Results

The hypertensive patients showed lower AD at multiple levels (ascending aorta [AA]: 2.07 ± 0.98 × 10− 3 mm Hg− 1 vs. 3.21 ± 1.70 × 10− 3 mm Hg− 1, p < 0.01; proximal thoracic descending aorta [PDA]: 2.58 ± 0.72 × 10− 3 mm Hg− 1 vs. 3.58 ± 1.47 × 10− 3 mm Hg− 1, p < 0.01; distal descending aorta [DDA]: 3.11 ± 1.84 × 10− 3 mm Hg− 1 vs. 4.27 ± 1.75 × 10− 3 mm Hg− 1, p < 0.01); faster PWV (7.46 ± 2.28 m/s vs. 5.82 ± 1.12 m/s, p < 0.05) and lower FMD (12.67% ± 6.49% vs. 20.66% ± 9.7%; p < 0.01). Systolic blood pressure was an independent predictor of PWV, AA-AD, DDA-AD and FMD. FMD was statistically significantly associated with PWV (r = − 0.37, p < 0.01) and AD (p < 0.01).

Conclusions

Hypertension has a contributive effect on aortic stiffness and endothelial dysfunction in DM2 patients.  相似文献   

20.

Purpose

To evaluate the use of the intravoxel incoherent motion (IVIM) technique in half-Fourier single-shot turbo spin-echo (HASTE) diffusion-weighted imaging (DWI), and to compare its accuracy to that of apparent diffusion coefficient (ADC) to predict malignancy in head and neck tumors.

Patients and methods

HASTE DW images of 33 patients with head and neck tumors (10 benign and 23 malignant) were evaluated. Using the IVIM technique, parameters (D, true diffusion coefficient; f, perfusion fraction; D*, pseudodiffusion coefficient) were calculated for each tumor. ADC values were measured over a range of b values from 0 to 1000 s/mm2. IVIM parameters and ADC values in benign and malignant tumors were compared using Student's t test, receiver operating characteristics (ROC) analysis, and multivariate logistic regression modeling.

Results

Mean ADC and D values of malignant tumors were significantly lower than those of benign tumors (P < 0.05). Mean D* values of malignant tumors were significantly higher than those of benign tumors (P < 0.05). There was no significant difference in mean f values between malignant and benign tumors (P > 0.05). The technique of combining D and D* was the best for predicting malignancy; accuracy for this model was higher than that for ADC.

Conclusions

The IVIM technique may be applied in HASTE DWI as a diagnostic tool to predict malignancy in head and neck masses. The use of D and D* in combination increases the diagnostic accuracy in comparison with ADC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号