首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Lynnworth LC  Liu Y 《Ultrasonics》2006,44(Z1):e1371-e1378
Ultrasonic flowmeters are one of the fastest-growing technologies within the general field of instruments for process monitoring, measurement and control. Today, acoustic/ultrasonic flowmeters utilize clamp-on and wetted transducers, single and multiple paths, paths on and off the diameter, passive and active principles, contrapropagating transmission, reflection (Doppler), tag correlation, vortex shedding, liquid level sensing of open channel flow or flow in partially-full conduits, and other interactions. Ultrasonic flowmeters are applicable to liquids, gases, and multiphase mixtures, but not without limits. However, no single technology, nor one type of interaction within a technology, can be best for all fluids, occasions and situations. Users who select a particular type of ultrasonic flowmeter over one based on a competing (nonultrasonic) technology often do so for one (or more) of the following reasons: ultrasonic equipment provides a useful measurement whether the fluid is single-phase or not single-phase; equipment is easy to use; flow regime can be laminar, transitional or turbulent; transducers are totally external (no penetration of the pressure boundary); transducers, if not clamp-on, are minimally invasive; no excess pressure drop; when certain conditions are met, accuracy can be better than 0.5%; fast (ms) response; reliable despite temperature extremes; reasonable purchase price, installation, operating and maintenance costs. Sometimes mass flowrate is obtainable. Energy flowrate might be achieved for natural gas and biogas in the near future. How did ultrasonic flowmeters advance in the past fifty years to support such claims? This paper tries to answer this question by looking at ultrasonic flowmeter inventions and publications since 1955, to see how four key problems were solved.  相似文献   

2.
Ultrasonic measurement of gas flow using electrostatic transducers   总被引:3,自引:0,他引:3  
O'Sullivan IJ  Wright WM 《Ultrasonics》2002,40(1-8):407-411
Ultrasonic gas flowmeters typically use narrowband piezoelectric transducer arrangements for interrogating the flow of gas in a pipe. In this work, the suitability of broadband electrostatic transducers operating at frequencies of up to 1 MHz for ultrasonic measurement of gas flow has been investigated. The transit time method of ultrasonic gas flow measurement was adopted and experiments were carried out using a laboratory test rig capable of producing a range of gas flowrates up to 17.5 m/s. The test rig also allowed easy interchange of different prototype flowmetering sections. Times of flight of ultrasonic waves interrogating the gas flow were measured using separate send/receive electrostatic transducer arrangements. Two flowmeter configurations were considered. The first interrogated the flow at 45 degrees in contra-propagating upstream and downstream directions. The second consisted of an up-stream interrogation at 45 degrees to the gas flow and an interrogation made normal to the flow direction. k factors correlating the fluid velocity along the ultrasonic path with the mean fluid velocity in the pipe were calculated using experimental ultrasonic data and anemometer measurements. All transducer configurations were numerically modelled using the computational fluid dynamics software package FLOTRAN (ANSYS Inc.). Theoretical gas flow velocities for both transducer arrangements were subsequently compared with experimental values and found to be in excellent agreement. A flow-dependent frequency shift of the received ultrasonic signals was also observed simultaneously with the transit time measurement.  相似文献   

3.
This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.  相似文献   

4.
This paper presents a novel method used to manufacture stacks of multiple matching layers for 15 MHz piezoelectric ultrasonic transducers, using fabrication technology derived from the MEMS industry. The acoustic matching layers were made on a silicon wafer substrate using micromachining techniques, i.e., lithography and etch, to design silicon and polymer layers with the desired acoustic properties. Two matching layer configurations were tested: a double layer structure consisting of a silicon–polymer composite and polymer and a triple layer structure consisting of silicon, composite, and polymer. The composite is a biphase material of silicon and polymer in 2-2 connectivity. The matching layers were manufactured by anisotropic wet etch of a (1 1 0)-oriented Silicon-on-Insulator wafer. The wafer was etched by KOH 40 wt%, to form 83 μm deep and 4.5 mm long trenches that were subsequently filled with Spurr’s epoxy, which has acoustic impedance 2.4 MRayl. This resulted in a stack of three layers: The silicon substrate, a silicon–polymer composite intermediate layer, and a polymer layer on the top. The stacks were bonded to PZT disks to form acoustic transducers and the acoustic performance of the fabricated transducers was tested in a pulse-echo setup, where center frequency, −6 dB relative bandwidth and insertion loss were measured. The transducer with two matching layers was measured to have a relative bandwidth of 70%, two-way insertion loss 18.4 dB and pulse length 196 ns. The transducers with three matching layers had fractional bandwidths from 90% to 93%, two-way insertion loss ranging from 18.3 to 25.4 dB, and pulse lengths 326 and 446 ns. The long pulse lengths of the transducers with three matching layers were attributed to ripple in the passband.  相似文献   

5.
郭涛  王志强  李成 《应用声学》2021,40(2):269-273
超声波时差法测量精度的提高,不仅使流量计的测量值更加准确,更能满足工业生产监控的智能化及自动化的需求。文中对时差法流量计的测量原理以及影响因素进行分析,结合超声波接收原理,设计了过零检测电路结构,并在顺逆流的时间差的测量问题上,应用互相关算法,完成对时间测量的自补偿。实验结果显示:在采取以上补偿方法后,能有效改善流量计精度,时差测量误差小于0.8%,并提高了测量实时性。  相似文献   

6.
本简要地介绍一种利用超声脉冲沿顺、逆流方向上传播速度之差来测定气体流速及流量的新的微机化超声波气体流量的工作原理,以及它在内径为700mm,流速在3-13m/s范围内的校准结果,实验结果表明该微机化超声气体流量计的测速精度优于±2%。  相似文献   

7.
速差法超声波气体流量计的原理和校准   总被引:1,自引:0,他引:1       下载免费PDF全文
本文简要地介绍一种利用超声脉冲沿顺、逆流方向上传播速度之差来测定气体流速及流量的新的微机化超声波气体流量计的工作原理,以及它在内径为700mm,流速在3—13m\s范围内的校准结果.实验结果表明该微机化超声气体流量计的测速精度优于±2%.  相似文献   

8.
Non-contact ultrasonic techniques   总被引:4,自引:0,他引:4  
Green RE 《Ultrasonics》2004,42(1-9):9-16
Non-contact generation and detection of acoustic and ultrasound waveforms is of practical importance, since it permits making acoustic and ultrasonic measurements at elevated temperatures, in corrosive and other hostile environments, in geometrically difficult to reach locations, in outer space and doing this at relatively large distances from the test structure. Non-contact acoustical and ultrasonic techniques currently available are laser generation, optical interferometric detection, electromagnetic acoustic transducers (EMATs), air(gas)-coupled systems and hybrid combinations of the above. The present paper will describe how several such systems have been used in unique materials characterization applications.  相似文献   

9.
The objective of the study was to acoustically characterize trisacryl polymeric microparticles (TMP), which are derived from biocompatible embolic agents.With significant acoustic properties, these polymeric particles could be potentially used as targeted ultrasound contrast agents, directed towards a specific site, with ligands conjugation on the polymeric network surface. In the in vitro study, a pulser/receiver (PRF of 1 kHz), associated to different transducers (5, 10 and 15 MHz), was used to measure the acoustic properties of the TMP inserted in a Couette flow device. Acoustic characterization according to TMP concentration (0.12-15.63 mg/ml), frequency (4.5-17 MHz, defined by each transducer bandwidth), ultrasound pressure (137-378 kPa) and exposure time (0-30 min) was conducted. Particle attenuation was also evaluated according to TMP concentration and emission frequency. Backscattering increased non linearly with concentration and maximum enhancement was of 16.4 dB ± 0.89 dB above 7.8 mg/ml. This parameter was found non-linear with increasing applied pressure and no harmonic oscillation could be noticed. Attenuation reached approximately 1.4 dB/cm at 15 MHz and for the 15.6 mg/ml suspension.The TMP have revealed in vitro ultrasound properties comparable to those observed with known contrast agents, studied in similar in vitro systems. However, such set-ups combined with a rather aqueous suspending medium, have some limitations and further investigations need now to be conducted to approach in vivo conditions in terms of flow and blood environment.  相似文献   

10.
用于测量流量和含沙量的超声波液位测定系统   总被引:3,自引:1,他引:2       下载免费PDF全文
本文介绍了实验室内用于测量流量和含沙量的超声波液位测定系统,此系统采用气介式方案,选用复合材料高频换能器作为超声波发射/接收器件,结构简单,静态测量时测量误差在150mm范围内不超过1mm,并可与微机进行远距离通讯。  相似文献   

11.
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.  相似文献   

12.
Iooss B  Lhuillier C  Jeanneau H 《Ultrasonics》2002,40(9):1009-1015
Flowmeter measurement using the ultrasonic transit-time method is based on the apparent difference of the sound velocity in the flow direction and in the opposite direction. This method gives a flow velocity averaged along a particular acoustical path. To convert this path velocity to a velocity averaged over the entire cross-section of the flowing medium, the knowledge of the flow velocity profile is essential. However, the acoustical paths joining the two transducers are supposed to be straight and fluid turbulence phenomena are neglected. In this paper, we describe a numerical procedure to estimate the uncertainties due to these approximations in the case of fully developed turbulence. The ultrasonic propagation is modelled in 2-D moving inhomogeneous media via a ray tracing algorithm. Influence of mean profiles of temperature and velocity is studied on simple examples. Fluid temperature fluctuations and fluid velocity turbulence are considered in the stochastic framework to obtain average uncertainties on the measurements of the liquid flow rate.  相似文献   

13.
杨波  曹丽  罗予频 《声学学报》2012,37(6):629-636
超声流量测量系统中,严重影响时间差检测的准确度和稳定性的“零点误差”和“温度漂移”问题可以通过对测量系统互易性的改善加以改进。本文通过对测量系统等效电路模型的分析阐述了系统互易的成立条件,并提出了一种通过对激励和接收电路等效阻抗进行对称性设计提高测量系统互易性的测量电路。这一电路设计易于在仪表中实现,其中换能器的负载阻抗能够根据需要灵活设定。在实际测量管道上进行的实验证明,使用这样的电路设计进行流量测量,能够大幅降低零点误差并抑制温度漂移,使得流量测量结果更加准确稳定。   相似文献   

14.
The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of “non-resonant” elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an uneven shape with a diameter of about 25 mm and a thickness varying from 2 to 6 mm. It was shown that TRA focusing system using non-resonant transducer had a bandwidth at 10 dB of 500 kHz while the resonant transducer provided about 100 kHz bandwidth. Correspondingly, the extended bandwidth of the TRA focusing system, especially toward higher frequencies, provides a 50% sharper spatial distribution. Furthermore, the relative level of the background ultrasound was reduced by a factor up to 3 as more frequencies were added coherently in focus and incoherently out of focus. Advantages of water-filled reverberators made of thin-wall plastic vessels include easy manufacturing, low costs, extreme simplicity, and good acoustical matching with soft tissues, important for biomedical applications.  相似文献   

15.
Combined sonication with dual-frequency ultrasound has been investigated to enhance heat transfer in forced convection. The test section used for this study consists of a channel with, on one hand, heating blocks normal to the water flow, equipped with thermocouples, and, on the other hand, two ultrasonic emitters. One is facing the heating blocks, thus the ultrasonic field is perpendicular, and the second ultrasonic field is collinear to the water flow. Two types of ultrasonic waves were used: low-frequency ultrasound (25 kHz) to generate mainly acoustic cavitation and high-frequency ultrasound (2 MHz) well-known to induce Eckart’s acoustic streaming. A thermal approach was conducted to investigate heat transfer enhancement in the presence of ultrasound. This approach was completed with PIV measurements to assess the hydrodynamic behavior modifications under ultrasound. Sonochemiluminescence experiments were performed to account for the presence and the location of acoustic cavitation within the water flow. The results have shown a synergetic effect using combined low-and-high-frequency sonication. Enhancement of heat transfer is related to greater induced turbulence within the water flow by comparison with single-frequency sonication. However, the ultrasonically-induced turbulence is not homogeneously distributed within the water flow and the synergy effect on heat transfer enhancement depends mainly on the generation of turbulence along the heating wall. For the optimal configuration of dual-frequency sonication used in this work, a local heat transfer enhancement factor up to 366% was observed and Turbulent Kinetic Energy was enhanced by up to 84% when compared to silent regime.  相似文献   

16.
Expressions making it possible to calculate the transmission coefficient of an ultrasonic interferometer, its Q factor and errors of interferometric measurements are presented. These expressions are obtained on the basis of a one-dimensional model which takes into account the non-ideal reflection of acoustic waves from the transducers, diffraction losses and electromechanical properties of transducers. Fixed path ultrasonic interferometers which are widely used for high precision measurements of ultrasound absorption and velocity in liquids, include air-backed transducers. Air-backing limits the application of these interferometers for the measurements under the high pressures. The influence of non-gaseous backing of transducers on the characteristics of an interferometer is theoretically analysed by means of suggested expressions. Frequency dependences of main parameters of the interferometer are obtained. The possibility of high precision measurements of velocity and absorption of ultrasound in liquids under the high pressures by means of fixed path interferometers with liquid-backed transducers is shown.  相似文献   

17.
This paper describes the use of air-coupled ultrasonic tomography for the simultaneous measurement of flow and temperature variations in gases. Air-coupled ultrasonic transducers were used to collect through-transmission data from a heated gas jet. A transducer pair was scanned in two-dimensional sections at an angle to the jet, and travel time and amplitude data recorded along various paths in counter-propagating directions. Parallel-beam tomographic reconstruction techniques allowed images to be formed of variations in either temperature or flow velocity. Results have been obtained using heated jets, where it has been shown that it is possible to separate the two variables successfully.  相似文献   

18.
New techniques of forming high intensity focused ultrasound (HIFU) fields using dynamic focusing and harmonic multifrequency excitation are developed for ultrasonic diagnostics and therapy. New designs of HIFU transducers based on high-performance composite materials are developed and studied. Finite-element and finite-difference simulations of HIFU transducers and processes of ultrasonic wave propagation in biological tissues are performed. The parameters of piezoceramic materials, piezoelements, and the acoustic fields of focusing ultrasonic transducers are measured. Experiments are performed on biological tissues ex vivo that confirm the efficiency, selectivity, and safety of the developed HIFU transducers and techniques of forming acoustic fields.  相似文献   

19.
Ultrasound is considered to be an effective active heat transfer enhancement method, which is widely used in various fields. But there is no clear understanding of flow boiling heat transfer characteristics in micro/mini-channels under ultrasonic field since the studies related are limited up to now. In this paper, a novel minichannel heat exchanger with two ultrasonic transducers inside the inlet and outlet plenum respectively is designed to experimentally investigate the impacts of ultrasound on flow boiling heat transfer enhancement in a minichannel heat sink. Flow visualization analyses reveal that ultrasound can promote rapid bubble motion, bubble detachment from heating wall surface and thereby new bubble generation, and decrease the length of confined bubble. Furthermore, the flow boiling experiments are initiated employing working fluid R141b at different ultrasonic parameters (e.g., frequency, power, angle of radiation) and heat flux under three types of ultrasound excitations: no ultrasound (NU), single inlet ultrasound (IU), inlet and outlet ultrasound (IOU). The results indicate that ultrasound has obvious augmentation effects on flow boiling heat transfer even though the intensification effects will be limited with the heat flux increases. The higher ultrasonic power, the lower ultrasonic frequency and the higher ultrasonic radiation angle, the better intensification efficiency. The maximum enhancement ratio of have in the saturated boiling section reaches 1.88 at 50 W, 23 kHz and 45° under the experimental conditions. This study will be beneficial for future applications of ultrasound on flow boiling heat transfer in micro/mini-channels.  相似文献   

20.
Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer’s PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10 cm leads to an uncertainty in the PTF measurement of ±97° at 4 MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8 MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1 MHz increasing to 16° at 8 MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号