首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel method used to manufacture stacks of multiple matching layers for 15 MHz piezoelectric ultrasonic transducers, using fabrication technology derived from the MEMS industry. The acoustic matching layers were made on a silicon wafer substrate using micromachining techniques, i.e., lithography and etch, to design silicon and polymer layers with the desired acoustic properties. Two matching layer configurations were tested: a double layer structure consisting of a silicon–polymer composite and polymer and a triple layer structure consisting of silicon, composite, and polymer. The composite is a biphase material of silicon and polymer in 2-2 connectivity. The matching layers were manufactured by anisotropic wet etch of a (1 1 0)-oriented Silicon-on-Insulator wafer. The wafer was etched by KOH 40 wt%, to form 83 μm deep and 4.5 mm long trenches that were subsequently filled with Spurr’s epoxy, which has acoustic impedance 2.4 MRayl. This resulted in a stack of three layers: The silicon substrate, a silicon–polymer composite intermediate layer, and a polymer layer on the top. The stacks were bonded to PZT disks to form acoustic transducers and the acoustic performance of the fabricated transducers was tested in a pulse-echo setup, where center frequency, −6 dB relative bandwidth and insertion loss were measured. The transducer with two matching layers was measured to have a relative bandwidth of 70%, two-way insertion loss 18.4 dB and pulse length 196 ns. The transducers with three matching layers had fractional bandwidths from 90% to 93%, two-way insertion loss ranging from 18.3 to 25.4 dB, and pulse lengths 326 and 446 ns. The long pulse lengths of the transducers with three matching layers were attributed to ripple in the passband.  相似文献   

2.
研制了一种厚度模空耦式压电换能器,使用综合考虑材料衰减系数和声阻抗的空耦式压电换能器电力声等效电路理论模型以指导匹配层结构设计和材料选择,选用新型的空心聚合物微珠/环氧树脂复合材料作为声匹配材料,优化设计电阻抗匹配及结构参数。该换能器中心频率为510 kHz,-6 dB频域相对带宽为25.4%,插入损耗为-27 dB。结果表明,使用新型低衰减系数的闭孔复合材料单匹配层设计的该换能器不仅保证了高灵敏度,同时简化了换能器结构,为空耦式压电换能器研制提供了新思路。   相似文献   

3.
Many acoustic metamaterials suffer from a narrow bandwidth transmission because of the impedance mismatch at the airmetamaterial interface. In this paper, a two-dimensional impedance-matched metamaterial with broadband transmission performance is investigated. The impedance matching layer is introduced for a gradient variation of effective impedance from the inlet of the unit to the outlet. The effective medium theory and corresponding effective model are used to explain the underlying mechanism. The improved energy transmission of our designs is demonstrated by experiment and numerical simulation within a broad frequency bandwidth over 6 kHz. Our impedance-matched design can be used to enhance sound absorption, which is expected to present improved acoustic performance in the applications of acoustic damper and muffler.  相似文献   

4.
Eames MD  Hossack JA 《Ultrasonics》2008,48(5):376-383
A low-cost, fully-sampled, 3600 element 2D transducer array operating at 5 MHz and designed for use in a hand-held ultrasound system is described here. Four array configurations are presented - (1) array with both matching and pedestal backing layers, (2) array with a matching layer but no backing pedestal, (3) array with a backing pedestal but no matching layer, and (4) array with neither matching layer nor backing pedestal. Each array was characterized in terms of impedance measurements, pulse-echo response, and experimental beamprofile. Comparative finite element analysis simulations are also presented. Average estimated active element yield for the four arrays was 94%. The array with pedestal layer proved the most promising, providing a 26% bandwidth and a 1.7 dB improvement in sensitivity with respect to the array with neither pedestal nor matching layer. Although this bandwidth is acceptable for our specific application (C-scan imaging), reverberations within the substrate material remain a potential challenge. We are currently working to fabricate a custom PCB material to address this concern, and may also consider using a pre-compensated transmit waveform or matched digital filter approach to further reduce the effects of such reverberations.  相似文献   

5.
A new class of materials for ultrasonic matching layers is presented. The materials consist of nanoscale cerium oxide particles in an epoxy functionalized organic inorganic hybrid polymer matrix. The cerium oxide agglomerates to particles with 20 nm diameters. The content of particles in the polymer matrix could be increased to 75 wt.% which corresponds to 37 vol.%. The most technical important piezoelectrical ceramics have an acoustic impedance of about 30 MRayl, to improve coupling into water or biological tissue with an acoustic impedance of about 1.5 MRayl a matching layer should have an acoustic impedance of about 6.8 MRayl. With a filling degree of 75 wt.% the new composite material reaches an acoustic impedance of 7 MRayl. The materials are synthesized by a hydrolytic condensation combined with polymerization. This way of synthesis allows the use of organic solvents to adjust the viscosity of the sol and the application of different coating techniques. Ultrasound transducers (100 MHz) were built to test the new matching layers and an increase of the voltage signal amplitude of about 100% could be detected.  相似文献   

6.
Zhou QF  Cannata J  Kirk Shung K 《Ultrasonics》2006,44(Z1):e607-e611
Using inversion domain engineering controlled by heating temperature, the LiNbO(3) (LNO) piezoelectric plate with both odd and even-order thickness-extensional modes can be excited simultaneously. Therefore, the inversion layer ultrasound transducer is expected to be capable of operating over a wider frequency range. In this paper, the electrical impedance and the acoustic characteristics of LiNbO(3) (LNO) inversion layer transducer have been studied by finite element modeling (FEM). The transducer designed for this study uses a 36 degrees rotated Y-cut LiNbO(3) thin plate with an active element thickness of approximately 100 microm. First the electrical and elastic properties of the 36 degrees rotated Y-cut LNO were obtained by transforming a basic piezoelectric matrix for Z-cut LNO. In order to validate the FEM using the transformed properties several pieces of pure and 50% inversion layer LNO were tested on the electrical impedance analyzer. The modeled impedance characteristics were consistent with the measured data. Next the model was used to design 50-60 MHz transducers using pure and 30% inversion LNO. Two lambda/4 matching layers and a Tungsten loaded epoxy backing were used in these designs. The modeled results show that an over 90% bandwidth transducer can be made with proper matching and 30% inversion layer.  相似文献   

7.
Son KT  Lee CC 《Ultrasonics》2012,52(4):555-563
Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.  相似文献   

8.
Shaul Ozeri 《Ultrasonics》2010,50(6):556-1092
This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load).The transducers consisted of PZT plane discs of 15 mm diameter and 1.3 mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency.The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver’s rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results.  相似文献   

9.
具有阻抗匹配层的宽带纵向振动压电换能器设计   总被引:8,自引:1,他引:7       下载免费PDF全文
陈航  张允孟  李志舜 《应用声学》2001,20(2):31-34,22
本文研究纵向振动压电换能器的频带展宽问题。在复合棒纵向换能器的辐射端加工适当材料的阻抗匹配层,可以使其工作在非单谐振状态下,在单层阻抗匹配层的情况下,合理地选择匹配层的厚度可以调整其谐振点之间的位置,从而改善换能器的辐射特性。本研究结果表明,对于机械品质因素Qm=6,发射响应带宽△f=4kHz的纵向振子,采用四分之一波长厚度的匹配层,在不降低发射响应的条件下,可展宽频带一倍以上。  相似文献   

10.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

11.
Double-layer materials were devised in order to improve the absorbing properties of electromagnetic wave absorbing plates. The double-layer wave absorbing materials are composed of a matching layer and an absorption layer. The matching layer is the surface layer through which most of the incident waves can enter, and the absorption layer beneath it plays an important role in incident wave attenuation. The total thickness of the double layer is the sum of the thicknesses of these two layers. Carbonyl iron (CI) and carbon black (CB) were used as absorbents in the matching and absorption layers, respectively. The structures of the CI and CB particles were analyzed using scanning electron microscopy and transmission electron microscopy; the dielectric properties and absorption mechanisms were also studied. In the testing frequency range 2-18 GHz, the results show that the double-layer absorbers have two absorption peaks, and the positions and values of these peaks change with the content level of the absorbents. When the mass fraction of CI in the matching layer is 50% and the total thickness of the absorber is 4 mm, the effective absorption band (below −8 dB) reaches 5.5, 5.8, and 6.5 GHz. Where the mass fraction of CB is 50% or 60% and the mass fraction of CI is 70%, the bandwidth with reflection loss below −4 dB is larger than 10 GHz.  相似文献   

12.
In the past decade, a variety of thermoacoustic engines (TAEs) were devised to convert thermal energy to acoustic power. In this paper, we optimized the design of a standing wave thermoacoustic generator that can provide high intensity acoustic pressure and convert it into electrical power output using a low cost alternator. Three prototypes of standing wave thermoacoustic generator (TAG) were designed to optimize the overall efficiency. The first prototype of standing wave TAG could produce an acoustic pressure of 0.9 kPa (153 dB) with an input thermal power of 210 W. Further, the maximum heat to electrical conversion efficiency was 0.045% with an input thermal power of 250 W. However, the performance of this system was not fully optimized. The performance of TAE depends upon various parameters including stack position, stack length and resonator length. Hence, a new second prototype of tunable TAG was developed to tune these critical parameters in order to improve the overall efficiency. A compact third prototype of TAG was successfully built with optimized parameters and has been tested. In the improved design, high intensity acoustic pressure of 2.9 kPa (163.5 dB) was observed for the same 210 W input thermal power. The maximum heat to electrical energy conversion efficiency was 0.084% with an input of 250 W which is 87% higher as compared to the first prototype. The major reason for the lower conversion efficiency is due to the low efficiency of the alternator. In future, high efficiency alternator designs can be employed along with careful impedance matching to obtain higher conversion efficiencies. The results described in this paper demonstrate the potential of developing compact portable acoustic power and electricity generators for decentralized power applications.  相似文献   

13.
An imperfect multi-layered acoustic cloak is proposed for a two-dimensional cloaking zone based on feasible material properties. In this model, the matching of sound speed and acoustic impedance has been investigated, and the effects of material and geometric properties on the imperfect cloak have been studied for better design of the imperfect cloak. The imperfect cloak could be improved using appropriate changes in the design parameters. By increasing the thickness of the high density layer and with some changes in the sound speeds between the high density and the low density layers, the imperfect cloaking model showed better cloaking performance than Cummer–Schurig cloak. Also, present results show that the sound speed matching is more important for acoustic cloaking than the impedance matching. These results can be applied as a practical design guide for two-dimensional cloaks using multilayered structures composed of naturally existing materials.  相似文献   

14.
In this paper, we present the transmission characteristics of a polyurea ultrasonic transducer operating in water. In this study, we used a polyurea transducer with fundamental resonance at approximately 30 MHz. Firstly, acoustic pressure radiated from the transducer was measured using a hydrophone, which has a diameter of 0.2 mm. The transmission characteristics such as relative bandwidth, pulse width, and acoustic sensitivity were calculated from the experimental results. The results of the experiment showed a relative bandwidth of 50% and a pulse width of 0.061 μs. The acoustic sensitivity was 0.60 kPa/V with good linearity, where the correlation coefficient R in the fitting calculation was 0.996. A maximum pressure of 13.1 kPa was observed when the transducer was excited at a zero-to-peak voltage of 21 V. Moreover, we experimentally verified the results. The results of the pulse/echo experiment showed that the estimated diameters of the copper wires were 458 and 726 μm, where the differences between the actual and measured values were 15% and 4%, respectively. Acoustic streaming was also observed so that a particle velocity map was estimated by particle image velocimetry (PIV). The sound pressure calculated from the particle velocity obtained by PIV showed good agreement with the acoustic pressure measured using the hydrophone, where the differences between the calculated and measured values were 12–19%.  相似文献   

15.
A Cochran  P Reynolds  G Hayward 《Ultrasonics》1998,36(10):969-977
A stacked ultrasonic transducer comprises multiple individual layers connected mechanically in series and electrically in parallel to reduce the fundamental thickness mode resonance to a frequency corresponding to the transit time of the complete stack and the electrical impedance to a value which corresponds to that of the layers of the stack in parallel. In turn, this allows lower frequency resonant operation than would be possible with a single layer, and facilitates electrical impedance matching to typical transmission circuitry. On transmission, an ideal stack of uniform layers will have an output amplitude larger than that of the equivalent single layer by a factor equal to the . However, using conventional signal amplification circuitry on reception, the output voltage amplitude will be smaller than that of the equivalent single layer by a similar factor. In the past, stacks have commonly been assembled from layers of conventional piezoceramic material but more recently there have been reports of stacks of 1–3 piezocomposites and it is this type that is considered here. The work described in this paper is motivated by the need to operate at frequencies lower than are possible using conventional piezocomposite fabrication technology. Progress in comparison of experimental and simulated results is outlined and the highlights of a theoretical design study are presented. These show that although the general behaviour of a stacked structure is easily predicted, a rigorous theoretical analysis is essential to understand the detail of even a limited range of possible designs.  相似文献   

16.
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions.  相似文献   

17.
文中针对空气耦合超声换能器及其在表面缺陷检测中的应用开展了研究。选用1-3型压电复合材料及双匹配层结构来实现超声换能器压电材料与空气之间声阻抗的逐渐过渡,提高压电材料/空气界面的声能量透射率进而提高空气耦合超声换能器的灵敏度。在此基础上研发制作了440 kHz多基元聚焦空气耦合超声换能器,并对其性能进行了测试。其焦距、焦宽及焦深分别为41.44 mm、1.14 mm和20.30 mm,灵敏度和带宽分别为-50 d B和20.2%。测试结果表明该空气耦合超声换能器具有优良的性能,利用该超声换能器可以有效检测材料表面缺陷。  相似文献   

18.
A four‐layer absorbing composite on millimeter scale is designed containing an absorbent with multilayer‐like structure on the microscale. In this four‐layer absorbing composite, epoxy resin acts as transparent layer, the multilayer‐like structure absorbent serves as the main absorbing layer; graphene/Ni composite acts as an impedance matching layer; and Fe3O4 nanoparticles serve as a magnetic‐loss absorbing layer. The reflection loss of the composites is simulated with CST Microwave Studio, and the absorbency of the composites is discussed in detail when the thickness of each layer is changed. The results show that when the thicknesses of the transparent layer, main absorbing layer, impedance matching layer, and magnetic‐loss absorbing layer are 2.5, 2, 1.5, and 2 mm, respectively, the minimum reflection loss of the composite is ?51.7 dB, the bandwidth below ?10 dB reaches 11.82 GHz, and the density of the composite is nearly 1.9 g cm?3. Therefore, this new four‐layer absorbing composite possesses strong absorbency, broad absorbing bandwidth, thin thickness, and light weight. Thus, a new way to the development of multilayer absorbing composites is presented.  相似文献   

19.
N de Jong  J Souquet  G Faber  N Bom 《Ultrasonics》1985,23(4):176-182
The performance of transducers used for medical diagnosis depends to a great extent on matching layer, backing impedance and geometry of the active surface. In this paper special attention is given to the element vibrational modes, the optimum matching, the grating lobe and change of the real acoustic impedance into an imaginary impedance as a function of the product of the width and wavelength. Grating lobes on the echo image and the effect of a mismatch of the matching layer are illustrated. Suggestions are made for the design of linear and phased array transducers considering the above-mentioned aspects.  相似文献   

20.
Broadband difference frequency generation is theoretically and experimentally confirmed. It is shown that a wide tunable range of greater than 220 nm (FWHM) around 4.2 μm can be obtained in a 40 mm long periodically poled lithium niobate crystal with a single quasi-phase-matched period at a certain temperature. The broad bandwidth can be explained by means of the group-velocity matching or phase-mismatch minimization at overlapped phase-match conditions. The result shows that the broadband mid-infrared (mid-IR) laser source may find profound applications in trace gases detection of multiple atmospheric species and high resolution spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号