首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

2.
Noboru Takeuchi 《Surface science》2007,601(16):3361-3365
The adsorption of acetylene on the Si(0 0 1)-c(2 × 4) surface at low and full coverage is studied by first principles density functional calculations using the generalized gradient approximation. For a single acetylene molecule, the most stable configuration corresponds to the di-σ site, on-top of a silicon dimer. This configuration is 0.36 eV more stable than the end-bridge site between two adjacent Si dimers. However, if there are two acetylene molecules, the paired end bridge configuration becomes the most stable. We have also studied the kinetics of the adsorption of a single acetylene molecule. Our calculations show that the reaction is barrier-free for adsorption in the di-σ configuration, while there is an energy barrier of 0.19 eV for adsorption in the end-bridge site. At monolayer coverage, the most stable configuration corresponds to acetylene molecules in the pair-end bridge configuration, in agreement with previous calculations. We have found a noticeable coverage dependence only for the end-bridge site, but not for the di-σ. Our results show that to have an accurate picture of the adsorption of acetylene on the Si(0 0 1) surface, a large unit cell is needed.  相似文献   

3.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

4.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

5.
We have studied the adsorption of Pb on the Rh(1 0 0) and (1 1 0) surfaces by photoemission and low energy electron diffraction (LEED), and tested the chemical properties by adsorption of CO. Pb forms two distinct c(2 × 2) phases on Rh(1 0 0), according to the temperature of the substrate. The phase formed below about 570-620 K, denoted α-c(2 × 2), reduces the coverage of adsorbed CO but does not affect the valence band spectrum of the molecule. The phase formed above this temperature, denoted β-c(2 × 2), also reduces the coverage of adsorbed CO but the valence band spectrum of the adsorbed CO is strongly affected. The two phases are also characterised by a slightly different binding energy of the Pb 5d5/2 level, 17.54 eV for the α phase and 17.70 for the β phase. The Pb/Rh(1 1 0) surface shows two ordered Pb induced phases, c(2 × 2) and p(3 × 1). CO adsorbs on the first with reduced heat of adsorption and with a valence band spectrum that is strongly altered with respect to CO adsorbed on clean Rh(1 1 0), but does not adsorb on the p(3 × 1) structure at 300 K. We compare the present results with previous results from related systems.  相似文献   

6.
The incorporations and migrations of the atomic oxygen in the topmost layer Si(1 0 0)-p(2 × 2) silicon surface, are investigated theoretically using density functional theory. We show that the diffusion is dependent on the starting and the final surrounding environment and does not simply consist in hops from one silicon-silicon bond to another. The activation energies range from 0.11 eV to 2.59 eV.  相似文献   

7.
The atomic and electronic structures of the Si(0 0 1)-c(4 × 4) surface have been studied by scanning tunneling microscopy (STM) and density functional theory (DFT). To explain the experimental bias dependent STM observations, a modified mixed ad-dimer reconstruction model is introduced. The model involves three tilted Si dimers and a carbon atom incorporated into the third subsurface layer per c(4 × 4) unit cell. The calculated STM images show a close resemblance to the experimental ones.  相似文献   

8.
Using scanning tunneling microscopy, growth of In nanoisland arrays on the Si(1 0 0)-c(4 × 12)-Al surface has been studied for In coverage up to 1.1 ML and substrate temperature from room temperature to 150 °C. In comparison to the case of In deposition onto the clean Si(1 0 0) surface or Si(1 0 0)4 × 3-In reconstruction, the In growth mode is changed by the c(4 × 12)-Al reconstruction from the 2D growth to 3D growth, thus displaying a vivid example of the Volmer-Weber growth mode. Possible crystal structure of the grown In nanoislands is discussed.  相似文献   

9.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

10.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

11.
Carbon (C) atom and carbon dimer (C2) are known to be the main projectiles in the deposition of diamond-like carbon (DLC) films. The adsorption and diffusion of the C adatom and addimer (C2) on the fully relaxed Si(0 0 1)-(2 × 1) surface was studied by a combination of the molecular dynamics (MD) and Monte Carlo (MC) simulation. The adsorption sites of the C and C2 on the surface and the potential barriers between these sites were first determined using the semi-empirical many-body Brenner and Tersoff potential. We then estimated their hopping rates and traced their pathways. It is found that the diffusion of both C and C2 is strongly anisotropic in nature. In addition, the C adatom can diffuse a long distance on the surface while the adsorbed C2 is more likely to be confined in a local region. Thus we can expect that smoother films will be formed on the Si(0 0 1) surface with single C atoms as projectile at moderate temperature, while with C2 the films will grow in two-dimensional islands. In addition, relatively higher kinetic energy of the projectile, say, a few tens of eV, is needed to grow DLC films of higher quality. This is consistent with experimental findings.  相似文献   

12.
The electronic structure of (GaAs)2/(AlAs)2(1 0 0)-c(4 × 4) superlattice surfaces was studied by means of angular-resolved photoelectron spectroscopy (ARUPS) in the photon energy range 20-38 eV. Four samples with different surface termination layers were grown and As-capped by molecular beam epitaxy (MBE). ARUPS measurements were performed on decapped samples with perfect c(4 × 4) reconstructed surfaces. An intensive surface state was, for the first time, observed below the top of the valence band. This surface state was found to shift with superlattices’ different surface termination in agreement with theoretical predictions.  相似文献   

13.
Structural and diffusion properties of a Cu(0 0 1)-c(2 × 2)-Pd surface and sub-surface ordered alloys are studied by using interaction potentials obtained from the embedded-atom method. The calculated diffusion energies are in agreement with observed kinetics of the surface alloy formation and confirm stability of the underlayer alloy. Activation energy of planar diffusion of palladium at the initial stage of the alloy formation as well as the activation energy of the overlayer-underlayer diffusion of the Pd atoms are in good agreement with those obtained by the scanning tunneling microscopy and low energy electron diffraction measurements, respectively.  相似文献   

14.
Density functional theory calculations are performed to investigate the C diffusion through the surface and subsurface of Ag/Ni(1 0 0) and reconstructed Ag/Ni(1 0 0). The calculated geometric parameters indicate the center of doped Ag is located above the Ni(1 0 0) surface owing to the size mismatch. The C binding on the alloy surface is substantially weakened, arising from the less attractive interaction between C and Ag atoms, while in the subsurface, the C adsorption is promoted as the Ag coverage is increased. The effect of substitutional Ag on the adsorption property of Ni(1 0 0) is rather short-range, which agrees well with the analysis of the projected density of states. Seven pathways are constructed to explore the C diffusion behavior on the bimetallic surface. Along the most kinetically favorable pathway, a C atom hops between two fourfold hollow sites via an adjacent octahedral site in the subsurface of reconstructed Ag/Ni(1 0 0). The “clock” reconstruction which tends to improve the surface mobility, is more favorable on the alloy surface because the c(2 × 2) symmetry is inherently broken by the Ag impurity. As a consequence, the local lattice strain induced by the C transport is effectively relieved by the Ag-enhanced surface mobility and the C diffusion barrier is lowered from 1.16 to 0.76 eV.  相似文献   

15.
Karl Jug 《Surface science》2007,601(6):1529-1535
Cyclic cluster calculations were performed with the quantum chemical method MSINDO to elucidate the relative stabilities of c(4 × 2), p(3 × 2) and (1 × 1) overlayer structures of water molecules on the MgO(1 0 0) surface. For the c(4 × 2) and p(3 × 2) structures both molecular adsorption and partially dissociated adsorption were considered. In agreement with earlier theoretical studies partial dissociation was found to be more stable than molecular adsorption. For the c(4 × 2) structure both monolayer and double layer coverage were studied. Adsorption was found to be more stabilized with increasing degree of dissociation until 50% of the water molecules were dissociated. In the case of 50% dissociated water molecules we found that one quarter of the Mg atoms were pulled out of the MgO surface when surface relaxation was taken into account. A new structure for the fully dissociated (1 × 1) water monolayer was found which is considerably more stable than previously studied arrangements. In all cases surface relaxation was found to be important. The most stable structures of c(4 × 2), p(3 × 2) and (1 × 1) symmetry have adsorption energies which differ by no more than 13 kJ/mol. This offers an explanation of phase transitions of overlayer structures found by experiments between 180 and 300 K.  相似文献   

16.
The initial stage of cubic silicon carbide (3C-SiC) growth on a Si(0 0 1) surface using dimethylsilane (DMS) as a source gas was observed using scanning tunneling microscopy (STM) and reflection high-energy electron diffraction (RHEED). It was found that the dimer vacancies initially existing on the Si(0 0 1)-(2 × 1) surface were repaired by the Si atoms in DMS molecules, during the formation of the c(4 × 4) surface. From the STM measurement, nucleation of SiC was found to start when the Si surface was covered with the c(4 × 4) structure but before the appearance of SiC spots in the RHEED pattern. The growth mechanism of SiC islands was also discussed based on the results of RHEED, STM and temperature-programmed desorption (TPD).  相似文献   

17.
First-principles pseudo-potential calculations within density-functional theory framework are performed in order to study the structural and electronic properties of nickel adsorption and diffusion on a GaN(0 0 0 1)-2×2 surface. The adsorption energies and potential energy surfaces are investigated for a Ni adatom on the Ga-terminated (0 0 0 1) surface of GaN. This surface is also used to study the effect of the nickel surface coverage. The results show that the most stable positions of a Ni adatom on GaN(0 0 0 1) are at the H3 sites and T4 sites, for low and high Ni coverage respectively. In addition, confirming previous experimental results, we have found that the growth of Ni monolayers on the GaN(0 0 0 1) surface is possible.  相似文献   

18.
We present an ab initio study of methanol interaction with the Si(1 1 1)7 × 7 surface using a Si(1 1 1)4 × 2 model. The study of the methanol dissociation on Si(1 1 1)4 × 2 shows that pair dissociation on adatom-restatom dangling bonds is largely favoured, in agreement with the experimental observations. The “center” type adatom is slightly more reactive than the “corner” type one, although the difference is weak. Similar behaviour is observed in both adatom types. Our results for a direct CH3OH dissociation favouring a basic cleavage (adsorption of OH and CH3 fragments) rather than an acidic one (adsorption of H and OCH3 fragments), we are finally led to take a kinetic effect into consideration to reconcile theory with experiment. We show that the presence of molecular precursor states is possible. Different orientations with respect to the silicon dangling bonds of these molecular precursors are investigated. However, the corresponding energies are very close and, considering their relative energies, it is finally difficult to discriminate between acidic and basic cleavages.  相似文献   

19.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

20.
In this paper, the InGa-terminated InGaAs(1 0 0) (4 × 2)/c(8 × 2) surface was studied in detail, which turned out to be the most suitable to develop an InGaAs/GaAsSb interface that is as sharp as possible. In ultra high vacuum the InGaAs surface was investigated with low-energy electron diffraction, scanning tunneling microscopy and UV photoelectron spectroscopy employing synchrotron radiation as light source. Scanning the ΓΔX direction by varying the photon energy between 8.5 eV and 50 eV, two surface states in the photoelectron spectra were observed in addition to the valence band peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号