首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the thermodynamic and structural properties of a CuAlNi model alloy (3A) system were investigated using a molecular dynamics (MD) simulation method. The interactions between atoms were modelled by the Sutton-Chen embedded atom method (SCEAM) based on many-body interactions. It was observed that at the end of thermal process the thermo-elastic phase transformation occurred in the model alloy system. In order to analyse the structures obtained from MD simulation, techniques such as thermodynamic parameters and radial distribution function (RDF) were used. The local atomic order in the model alloy was analysed using Honeycutt–Andersen (HA) method.  相似文献   

2.
Interatomic potentials have great importance in the analysis and calculations of some parameters in atomic scale. These calculations are realised by the computer simulation techniques. In the present study, a molecular dynamics (MD) simulation method which allows the system to vary in shape and size was used for the investigation of diffusionless phase transformation in Ni–37.5 at.%Al alloy model which exhibits shape memory effect in this composition. Interatomic forces were determined by the gradient of Lennard-Jones potential function, and the potential parameters were optimised by the MD simulations. Optimisation was done corresponding to the crystal lattice properties and melting point. The crystallographic properties of the alloy were investigated in high temperature phase (B2-type super-lattice) field, and diffusionless phase transformation was carried out by means of a rapid cooling method. Also, lattice faults were observed in the crystal structure after the transformation.  相似文献   

3.
Ab initio full-potential linearised augmented plane wave (FP-LAPW) method within density functional theory is applied to study the effect of composition on the structural, electronic and thermodynamic properties of CuBrxI1?x ternary alloy. The structural properties at equilibrium are investigated by using the new form of generalised gradient approximations that are based on the optimisation of total energy. For band structure calculations, both Engel–Vosko and modified Becke–Johnson of the exchange-correlation energy and potential, respectively, are used. Deviation of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence are observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ?Hm as well as the phase diagram by calculating the critical temperatures. A numerical first-principle calculations of the elastic constants as function of pressure is used to calculate C11, C12 and C44.  相似文献   

4.
The NixAl1−x alloys exhibit shape memory effect, for which thermoelastic phase transformations are essential, in the composition range of 60<x<65. The analytical studies are very difficult on the thermoelastic phase transformations because these types of transformations exhibit anharmonic behaviour. In order to overcome this difficulty, it is possible to benefit from the molecular dynamics (MD) calculations based on interatomic interaction potentials. In the present study, the interatomic interactions of Ni62.5Al37.5 alloy have been modelled by means of Lennard-Jones potential energy function. A MD cell of 1024 atoms in B2 super lattice has been chosen and the structural changes were investigated on this system with changing temperature. It has been observed that the model alloy exhibits the thermoelastic phase transformation with thermal cycling. A hysteresis has been determined between forward and backward transformation temperatures. The structural analysis is also done before and after the transformation.  相似文献   

5.
建立了纳米晶合金相的热力学模型,可定量描述纳米尺度下合金体系中化合物相的热力学性质,并预测合金相的稳定性及其转变规律.利用该模型全面计算了纳米晶Sm-Co合金体系中各化合物相在不同晶粒尺寸下的摩尔吉布斯自由能随温度的变化关系,预测了纳米尺度下Sm-Co合金体系中各物相的相对稳定性及转变规律.模型预测结果示出,在室温附近,随着纳米晶粒尺寸的减小,某些纳米晶合金相的摩尔吉布斯自由能将由负值变为正值,预示着将向其他更稳定的纳米晶合金相转变,这是与传统粗晶材料中合金相的稳定性仅依赖于温度条件而完全不同的纳米晶合金 关键词: 纳米晶材料热力学 Sm-Co合金 相稳定性 相变  相似文献   

6.
The quasi-chemical expression for weakly interacting binary alloy has been applied to obtain energy parameters and their temperature derivatives for Na–K liquid alloy at 384?K. These energy parameters have then been used to calculate thermodynamic functions, such as free energy of mixing, heat of mixing, entropy of mixing and microscopic functions, such as concentration fluctuation in long wavelength limit, Warren–Cowley short-range order parameter, ratio of mutual and self-diffusion coefficients. The analysis reveals that the energy parameters are temperature dependent and the Na–K liquid alloy at 384?K is a weakly interacting homocoordination system. The observed thermodynamic properties of Na–K alloy in molten state have successfully been explained by assuming Na2K complex on the basis of the quasi-chemical formalism for a weakly interacting system.  相似文献   

7.
 对高压下液态硝基甲烷的性质进行经典和基于第一性原理计算的Car-Parrinello分子动力学(CPMD)模拟。利用经典势的分子动力学(MD)模拟研究了高压压缩状态下液态硝基甲烷的结构和热力学性质,得到了高达14.2 GPa压力下的理论Hugoniot数据。对于一些热力学函数,如总能和粒子速度,经典势模拟给出了很好的总趋势,基本特征和实验观测一致。但是在给定的密度下,经典模拟预言的Hugoniot压力偏高。在几个选定的密度下,进行了CPMD模拟,得到了二体相关函数、速度自相关函数、振动光谱和其它的热力学性质,并与经典模拟结果进行了比较。对二体相关函数的分析表明经典势的短程部分的刚性可能太强,从而导致了比实验值高的理论压力值。对于某些二体相关函数,CPMD模拟和经典模拟结果差别很大,可以归结为量子效应。当压力增高时,量子模拟得到的振动光谱向高频部分移动的现象与实验观测相符合。  相似文献   

8.
李工  刘建华  王文魁  刘日平 《中国物理 B》2010,19(9):96202-096202
The solid state phase transformation of Cu-Al-Bi alloy under high pressure was investigated by x-ray diffraction, energy dispersive spectroscopy and transmission electron microscopy. Experimental results show that the initial crystalline phase in the Cu-Al-Bi alloy annealed at 750℃ under the pressures in the range of 0-6 GPa is α-Cu solid solution (named as α-Cu phase below), and high pressure has a great influence on the crystallisation process of the Cu-Al-Bi alloy. The grain size of the α-Cu phase decreases with increasing pressure as the pressure is below about 3 GPa, and then increases (P 3 GPa). The mechanism for the effects of high pressure on the crystallisation process of the alloy has been discussed.  相似文献   

9.
A Ni-P solid solution phase was obtained by quenching of melts under a pressure of 4.5 GPa. This was considered as a metastable high pressure phase. Despite the lack of thermodynamic parameters for Ni80, P20 alloy under pressure, the degree of undercooling, nucleation frequency and crystal growth velocity were calculated. We conclude that metastable phases with the same composition as the melting phase, such as supersaturated solid solution phase and amorphous phase, are easily prepared by high-pressure quenching.  相似文献   

10.
《Comptes Rendus Physique》2012,13(3):257-267
High energy X-ray diffraction is a powerful tool, able to follow phase transformations during complex thermal or thermo-mechanical treatments. High energy allows one to study volumic specimens of a few mm3 and get successive data within a few seconds or less. The technique is described with different experimental setups (heating devices, detectors for diverse acquisition times) allowing diverse ranges for heating and cooling rates. Three examples are considered to illustrate the results obtained by using high energy X-ray diffraction. The first one corresponds to a simple diffusive phase transformation during an isothermal thermal path for the αβ transformation in a titanium alloy, highlighting the diffusive character considering the cell parameter evolutions of the parent phase. The second one illustrates the precipitation sequences observed during ageing of a β-metastable phase in a titanium alloy that was not obtained by TEM. The last example illustrates the phase evolutions during ageing of a martensitic steel showing the complexity of cell parameters evolution and some evolutions of the stress state.  相似文献   

11.
再结晶和外力场下第二相析出的相场法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
宗亚平  王明涛  郭巍 《物理学报》2009,58(13):161-S168
在讨论相场法模拟基本方程的基础上,提出了晶界范围宽度的新概念,解释了相场模拟模型中有序化参数梯度范围的物理意义,论证了晶界范围不是晶界原子错排的宽度,而是界面能和界面元素偏析存在范围的观点.建立了一个模拟合金再结晶的相场模型,提出了一系列法则来获得模型中各参数的物理真实值,以AZ31镁合金为例,实现了再结晶过程晶粒长大的真实时间和空间的模拟,通过与试验数据的对比证明了模型的有效性.此外,还列举了相场法模拟Ti-25Al-10Nb合金中O相在外力场作用下析出过程的一系列有趣的新结果,讨论了外力场对第二相析出的重要影响和机理以及模拟结果对合金开发潜在的重要指导意义. 关键词: 相场法 再结晶 析出 外力场  相似文献   

12.
A new interatomic potential for the Ni–Zr system is presented. This potential was developed specifically to match experimental scattering data from Ni, Zr and NiZr2 liquids. Both ab initio and published thermodynamic data were used to optimise the potential to study the liquid and amorphous structure of the NiZr2 alloy. This potential has the C 16 phase, being more stable than C 11b phase in the NiZr2 alloy, consistent with experiments. The potential leads to the correct glass structure in the molecular dynamics simulation and, therefore, can be used to study the liquid–glass transformation in the NiZr2 alloy.  相似文献   

13.
An integral fitting method has been developed to determine the phase transformation mechanism and to extract the kinetic parameters during the crystallization of amorphous alloys. The proper kinetic function of the phase transformation was firstly deduced. Theoretical differential scanning calorimetry curves were then calculated. All the kinetic parameters can be extracted by fitting the calculated differential scanning calorimetry curves to experimental data. We applied the integral fitting method to analyze the isochronal crystallization of the Ti50Cu42Ni8 amorphous alloy. Results indicate that a transformation process considering impingement is more suitable to describe the crystallization kinetics of this alloy than using the traditional Johnson-Mehl-Avrami model. Mean values of the obtained kinetic parameters show strong heating rate dependence.  相似文献   

14.
王立国  孙久勋  杨维 《中国物理 B》2008,17(8):2867-2873
The thermodynamic properties of the ε phase of solid oxygen are studied by using the analytic mean field approach (AMFP). Analytic expressions for the Helmholtz free energy, internal energy and equation of state of solid oxygen have been derived based on the multi-exponential potential. The formulism for the case of double-exponential (DE) model is applied to the ε phase of solid oxygen. Its four potential parameters are determined through fitting the experimental compression data of the ε phase of solid oxygen. Numerical results of the pressure dependence of the volume calculated by using the AMFP are in good agreement with the original experimental data. This suggests that the AMFP is a useful approach to study the thermodynamic properties of the ε phase of solid oxygen. Furthermore, we predict the variation of the volume, lattice parameters and intermolecular distances with pressure, and some thermodynamic quantities versus volume, at several higher temperatures.  相似文献   

15.
An energy model for the melt of bulk metallic glass (BMG) with clusters was established, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribution of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt decreases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol-1·s-1.  相似文献   

16.
U. Mehta  S. K. Yadav  I. Koirala 《哲学杂志》2020,100(19):2417-2435
ABSTRACT

The thermodynamic and surface properties of the ternary Al–Cu–Fe alloy in the liquid state have been computed using different models. The thermodynamic properties, such as activity and excess free energy of mixing and the surface properties, such as surface tension have been calculated. The temperature dependence of activity and surface concentration of the components of the ternary Al–Cu–Fe alloy in fixed proportion of any two components have also been calculated. The surface tension of the alloy with respect to the change in temperature in the range 1823–2073?K has also been studied.  相似文献   

17.
Shell-model molecular dynamics (MD) simulation has been performed to investigate the melting of the major Earth-forming mineral: periclase (MgO), at elevated temperatures and high pressures, based on the thermal instability analysis. The interatomic potential is taken to be the sum of pair-wise additive Coulomb, van der Waals attraction, and repulsive interactions. The MD simulation with selected Lewis–Catlow (LC) potential parameters is found to be very successful in describing the melting behavior for MgO, by taking account of the overheating of a crystalline solid at ambient pressure. The thermodynamic melting curve is estimated on the basis of the thermal instability MD simulations and compared with the available experimental data and other theoretical results in the pressure ranges 0–150 GPa. Our simulated melting curve of MgO is consistent with results obtained from Lindemann melting equation and two-phase simulated data at constant pressure by Belonoshko and Dubrovinsky, in the pressure below 20 GPa. The extrapolated melting temperatures in the lower mantle are in good agreement with the results obtained from Wang's empirical model up to 100 GPa. Compared with experimental measurements, our results are substantially higher than that determined by Zerr and Boehler, and the discrepancy between DAC and MD melting temperatures may be well explained with different melting mechanisms. Meanwhile, the radial distribution functions (RDFs) of Mg–Mg, O–Mg, and O–O ion pairs near the melting temperature have been investigated.  相似文献   

18.
This work reexamines and updates earlier investigations on the phase behaviour of the Gay-Berne liquid crystal model, concentrating on the effect of varying temperature. Constant volume and constant pressure Monte Carlo simulations are combined for systems consisting of N = 500 molecules along different isotherms over the reduced temperature range 0.60 ≤ T ≤ 1.25. As in previous simulation studies of the model, the study identifies nematic and smectic B phases on compressing the isotropic fluid, the particular phase sequence depending on temperature. The nematic phase is found to be stable with respect to the isotropic phase for reduced temperatures T ≥ 0.75. In the temperature range 0.75 ≤ T ≤ 1.25, the phase boundaries of the isotropic-nematic transition are obtained by computing the Helmholtz free energy of both phases from thermodynamic integration. From the simulation data, the relative volume change at the isotropic-nematic transition is about 2%, and this value appears to be rather insensitive to changes in temperature. On compressing the nematic phase, the Gay-Berne fluid undergoes a strong first-order transition to the smectic B phase. This transition is studied by using constant pressure simulation, and the coexistence properties are estimated from the limits of mechanical stability of the nematic phase. Larger relative volume changes are found at the transition than those suggested by previous studies, with typical values increasing up to 10.5% as the temperature is decreased. The results are consistent with the existence of strong coupling between nematic and smectic order parameters. For temperatures T ≤ 0.70 the nematic phase is no longer stable, and the phase sequence isotropic-smectic B is observed. Therefore, the Gay-Berne model exhibits an isotropic-nematic-smectic B triple point. Extrapolating the present simulation data, this triple point is located approximately at reduced temperature TINB ? 0.70 and reduced pressure PINB ? 1.825.  相似文献   

19.
S. Singh  U.P. Singh  Y. Singh 《Physica A》1983,121(3):563-575
The thermodynamic perturbation theory in which all angle-dependent interactions are considered as a perturbation of the central potential is applied to study the equilibrium properties of a fluid composed of non-axial molecules. The influence of a large number of anisotropic pair and three-body non-additive interactions have been taken into account. Using the same set of force parameters the calculation is made for gaseous pressure second and third virial coefficients and liquid phase thermodynamic properties (Helmholtz free-energy, configurational energy, pressure and entropy). It is shown that the non-axial approximation is an improvement over the axial one. Excellent agreement between theory and experiment is obtained for ethylene.  相似文献   

20.
Gas-induced geodynamic phenomena can occur during underground mining operations if the porous structure of the rock is filled with gas at high pressure. In such cases, the original compact rock structure disintegrates into grains of small dimensions, which are then transported along the mine working space. Such geodynamic events, particularly outbursts of gas and rock, pose a danger both to the life of miners and to the functioning of the mine infrastructure. These incidents are rare in copper ore mining, but they have recently begun to occur, and have not yet been fully investigated. To ensure the safety of mining operations, it is necessary to determine parameters of the rock–gas system for which the energy of the gas will be smaller than the work required to disintegrate and transport the rock. Such a comparison is referred to as an energy balance and serves as a starting point for all engineering analyses. During mining operations, the equilibrium of the rock–gas system is disturbed, and the rapid destruction of the rock is initiated together with sudden decompression of the gas contained in its porous structure. The disintegrated rock is then transported along the mine working space in a stream of released gas. Estimation of the energy of the gas requires investigation of the type of thermodynamic transformation involved in the process. In this case, adiabatic transformation would mean that the gas, cooled in the course of decompression, remains at a temperature significantly lower than that of the surrounding rocks throughout the process. However, if we assume that the transformation is isothermal, then the cooled gas will heat up to the original temperature of the rock in a very short time (<1 s). Because the quantity of energy in the case of isothermal transformation is almost three times as high as in the adiabatic case, obtaining the correct energy balance for gas-induced geodynamic phenomena requires detailed analysis of this question. For this purpose, a unique experimental study was carried out to determine the time required for heat exchange in conditions of very rapid flows of gas around rock grains of different sizes. Numerical simulations reproducing the experiments were also designed. The results of the experiment and the simulation were in good agreement, indicating a very fast rate of heat exchange. Taking account of the parameters of the experiment, the thermodynamic transformation may be considered to be close to isothermal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号