首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Spherical microphone arrays have been recently used for room acoustics analysis, to detect the direction-of-arrival of early room reflections, and compute directional room impulse responses and other spatial room acoustics parameters. Previous works presented methods for room acoustics analysis using spherical arrays that are based on beamforming, e.g., delay-and-sum, regular beamforming, and Dolph-Chebyshev beamforming. Although beamforming methods provide useful directional selectivity, optimal array processing methods can provide enhanced performance. However, these algorithms require an array cross-spectrum matrix with a full rank, while array data based on room impulse responses may not satisfy this condition due to the single frame data. This paper presents a smoothing technique for the cross-spectrum matrix in the frequency domain, designed for spherical microphone arrays, that can solve the problem of low rank when using room impulse response data, therefore facilitating the use of optimal array processing methods. Frequency smoothing is shown to be performed effectively using spherical arrays, due to the decoupling of frequency and angular components in the spherical harmonics domain. Experimental study with data measured in a real auditorium illustrates the performance of optimal array processing methods such as MUSIC and MVDR compared to beamforming.  相似文献   

2.
This work presents a new technique for automatically generating the 3D scanning surface for acoustic imaging using microphone arrays. Acoustic images, or maps, of sound coming from spatially distributed sources, may be generated from microphone array data using algorithms such as beamforming. Traditional 2D acoustic maps can contain errors in the near-field if the object being imaged has a 3D shape. It has been shown that using the 3D surface geometry of an object as a scanning surface for beamforming can provide more accurate results. The methods used previously to generate this 3D scanning surface have either required existing CAD (Computer-Aided Design) models of the object being acoustically imaged or have required separate equipment which is generally bulky and expensive. The new method uses one or more cameras in the array, a data projector, and structured light code to automatically generate the 3D scanning surface. This has the advantage that it is inexpensive, can be incorporated as an add-onto existing microphone arrays, has short scan time, and is capable of being extended to imaging dynamic scenes. This technique is tested using beamforming and CLEAN-SC (CLEAN based on spatial Source Coherence) algorithms for a spherical array and an Underbrink multi-arm spiral array. For sound sources located about 1.2 m from the array, the mean position errors obtained are 6 mm. This is a quarter of the diameter of the mini-speakers being used as a sound sources.  相似文献   

3.
丁晋晋  胡定玉  余亮 《声学学报》2022,47(2):220-228
为解决三维空间中声源成像分辨率低的问题,提出一种基于非同步测量的三维空间声成像方法.该方法首先通过移动球形传声器阵列扫描空间分布的声源,然后利用非同步测量技术近似得到大孔径、高密度的传声器阵列测量结果,最后通过传统波束形成算法成像.仿真及实验结果表明,该方法与单次测量下的波束形成方法相比,聚焦性能更好,空间分辨率高,可...  相似文献   

4.
This paper deals with experimental investigation of the lined wall boundary condition in flow duct applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a microphone array located in the liner test section, is carried out in order to extract the axial wavenumbers with the help of an "high-accurate" singular value decomposition Prony-like algorithm. The experimental axial wavenumbers are then used to provide the lined wall impedance for both downstream and upstream acoustic propagation by means of a straightforward impedance education method involving the classical Ingard-Myers boundary condition. The results show that the Ingard-Myers boundary condition fails to predict with accuracy the acoustic behavior in a lined duct with flow. An effective lined wall impedance, valid whatever the direction of acoustic propagation, can be suitably found from experimental axial wavenumbers and a modified version of the Ingard-Myers condition with the form inspired from a previous theoretical study [Aure?gan et al., J. Acoust. Soc. Am. 109, 59-64 (2001)]. In a second experiment, the scattering matrix of the liner test section is measured and is then compared to the predicted scattering matrix using the multimodal approach and the lined wall impedances previously deduced. A large discrepancy is observed between the measured and the predicted scattering coefficients that confirms the poor accuracy provided from the Ingard-Myers boundary condition widely used in lined duct applications.  相似文献   

5.
This paper is devoted to a method of extraction of guided waves phase velocities from experimental signals. Measurements are performed using an axial transmission device consisting of a linear arrangement of emitters and receivers placed on the surface of the inspected specimen. The technique takes benefit of using both multiple emitters and receivers and is validated on a reference wave guide. The guided mode phase velocities are obtained using a projection in the singular vectors basis. The singular vectors are determined by the singular values decomposition (SVD) of the response matrix between the two arrays in the frequency domain. This technique enables to recover accurately guided wave phase velocity dispersion curves. The SVD based approach was designed to overcome limitations of spatio-temporal Fourier transform for receiver array of limited spatial extent as in the case of clinical assessment of cortical bone in axial transmission.  相似文献   

6.
提出了一种吸顶式传声器阵列阵元坐标的标定方法。针对在混响声场中,时延估计算法性能严重下降从而导致在标定传声器阵元坐标时产生较大误差的问题,提出了利用脉冲声源作为标定声源,并且截取脉冲源直达声的方法来抑制混响声场的影响,提高传声器阵元坐标标定的精度。建立了阵元坐标标定的误差分析模型,并以白噪声和脉冲声源作为标定声源进行数据仿真和对比分析。仿真结果表明,使用脉冲声源作为标定声源能有效地抑制混响声场的影响,获得传声器阵列阵元的准确坐标。同时,在封闭的房间内建立起孔径为3.5 m、64阵元的螺旋状吸顶传声器阵列进行了实验研究,实验结果验证了本文提出方法的有效性。   相似文献   

7.
The traditional microphone configuration used to measure room impulse responses (IRs) according to ISO 3382:2009 is an omnidirectional and figure-8 microphone pair. IRs measurements were taken in a 2500-seat auditorium to determine how the results from a spherical microphone array (an mh acoustics Eigenmike-em32) compare to those from the traditional microphone setup (a Brüel & Kjær Type-4192 omnidirectional microphone and a Sennheiser MKH30 figure-8 microphone). Measurements were obtained at six receiver locations, with three repetitions each in order to first evaluate repeatability. The metrics considered in this study were: reverberation time (T30), early decay time (EDT), clarity index (C80), strength (G), lateral energy fraction (JLF) and late lateral energy level (LJ). Before calculating these quantities, the IRs were filtered to equalize the frequency response of the microphones and sound source. For the spherical array measurements, the omnidirectional (monopole) and figure-8 (dipole) patterns were extracted using beamforming. In terms of repeatability, the average standard deviation of the three measurements at each receiver location averaged across all metrics, receivers, and octave bands was found to be 0.01 just noticeable differences (JNDs). The analysis comparing the measurements from the two microphone configurations yielded differences which were less than 1 JND for the majority of metrics, with a few exceptions of EDT and C80 slightly above 1 JND. Based on this case study, these results indicate that spherical microphone arrays can be used to obtain valid room IR measurements, which will allow for the development of new metrics utilizing the higher spatial resolution made possible with spherical arrays.  相似文献   

8.
石佳韵  陈华伟 《声学学报》2020,45(5):683-695
一阶指向可调差分传声器阵列具有尺寸小、主瓣指向灵活可调、以及阵列响应不随频率变化等优点,因而在音频处理领域得到了重要关注。但差分传声器阵列对阵元失配误差较为敏感,在实际设计中需要予以考虑。前后向比直接反映了传声器阵列对后向噪声干扰的抑制程度,是差分传声器阵列设计中的重要指标。本文从理论上深入剖析了失配误差对一阶指向可调差分传声器阵列前后向比性能的影响,揭示了其中蕴含的规律。在此基础上,针对实际中同时存在随机失配误差情况,提出了一种最差性能优化设计方法。仿真实验和实测实验验证了本文理论分析的正确性和所提优化设计方法的有效性。   相似文献   

9.
This paper demonstrates that microphone array signal processing can be implemented by using adaptive model-based filtering approaches. Nearfield and farfield sound propagation models are formulated into state-space forms in light of the Equivalent Source Method (ESM). In the model, the unknown source amplitudes of the virtual sources are adaptively estimated by using Kalman filters (KFs). The nearfield array aimed at noise source identification is based on a Multiple-Input–Multiple-Output (MIMO) state-space model with minimal realization, whereas the farfield array technique aimed at speech quality enhancement is based on a Single-Input–Multiple-Output (SIMO) state-space model. Performance of the nearfield array is evaluated in terms of relative error of the velocity reconstructed on the actual source surface. Numerical simulations for the nearfield array were conducted with a baffled planar piston source. From the error metric, the proposed KF algorithm proved effective in identifying noise sources. Objective simulations and subjective experiments are undertaken to validate the proposed farfield arrays in comparison with two conventional methods. The results of objective tests indicated that the farfield arrays significantly enhanced the speech quality and word recognition rate. The results of subjective tests post-processed with the analysis of variance (ANOVA) and a post-hoc Fisher's least significant difference (LSD) test have shown great promise in the KF-based microphone array signal processing techniques.  相似文献   

10.
This paper presents a measurement technique for estimating the far-field directivity of the sound radiated from a duct using measurements of acoustic pressure made inside the duct. The technique is restricted to broadband, multi-mode sound fields whose directivity patterns are axi-symmetric, and whose modes are mutually uncorrelated. The technique uses a transfer function to relate the output from an in-duct axial beamformer to measurements of the far-field polar directivity. A transfer function for a hollow cylindrical duct with no flow is derived, and investigated in detail. Transfer functions for practical cases concerning aeroengine exhausts are also presented. The transfer function is shown to be insensitive to the mode-amplitude distribution inside the duct, and hence can be used to predict the directivity in practice where the noise source distribution is unknown. The technique is then validated using a no-flow facility, and is shown to be able to predict variations in the far-field directivity pattern and also estimate the far-field sound pressure levels to within 2 dB. It is suggested that the proposed technique will be especially useful for fan rig experiments, where direct measurement of directivity, for example by use of an anechoic chamber, is impossible.  相似文献   

11.
何云涛  江月松  何烨 《光学学报》2008,28(s2):38-42
针对光纤传输和干涉成像阵列中的相位误差, 提出了一种基于特殊光子晶体的全息相位校正方法。首先分析了光纤干涉阵列成像的基本原理和相位信息的传输过程, 以一维线性阵列建立成像系统相位误差模型, 通过对参考光束和探测器前的快门交替打开和闭合, 来分别实现在晶体上写入由光纤阵列的出射光束与参考光束干涉形成的含有相位误差的光栅函数, 和光纤中出射光束被该光栅衍射和相位偏移以消除相位误差, 从理论上分析了上述基于光子晶体的全息法相位校正原理。最后采用所建立的含有相位误差的干涉阵列进行成像仿真, 对未加校正、采用本文方法和采用冗余基线校正的结果进行了对比分析。  相似文献   

12.
任维怡  陈华伟  鲍彧 《应用声学》2015,34(5):413-424
由于传声器阵列通常对阵元失配误差较为敏感,因此稳健波束形成器的设计已成为传声器阵列处理领域的研究热点之一。概率密度法是目前传声器阵列稳健波束形成器设计中的一类重要方法,但该方法所需的阵元失配误差的概率密度信息在实际中较难获取。针对这一问题,本文研究了基于阵元失配误差低阶统计量的稳健波束形成器设计方法,该方法仅利用在实际中较易获取的阵元失配误差的一阶和二阶统计量信息。本文分别研究了基于阵元失配误差低阶统计量的固定权和变加权最小二乘波束形成器设计,给出了两种波束形成器的相关设计理论。理论和仿真分析表明,在小误差条件下,低阶统计量法所设计的波束形成器仍保持与概率密度法相当的性能。  相似文献   

13.
In this paper, a beamforming correction for identifying dipole sources by means of phased microphone array measurements is presented and implemented numerically and experimentally. Conventional beamforming techniques, which are developed for monopole sources, can lead to significant errors when applied to reconstruct dipole sources. A previous correction technique to microphone signals is extended to account for both source location and source power for two-dimensional microphone arrays. The new dipole-beamforming algorithm is developed by modifying the basic source definition used for beamforming. This technique improves the previous signal correction method and yields a beamformer applicable to sources which are suspected to be dipole in nature. Numerical simulations are performed, which validate the capability of this beamformer to recover ideal dipole sources. The beamforming correction is applied to the identification of realistic aeolian-tone dipoles and shows an improvement of array performance on estimating dipole source powers.  相似文献   

14.
声矢量阵阵元位置及幅相误差有源校正算法*   总被引:1,自引:1,他引:0       下载免费PDF全文
张柯  王闯  付进 《应用声学》2015,34(5):457-465
针对声矢量阵幅相误差及阵元位置误差校正问题,基于特征分解法,提出一种简单实用的有源校正算法。该方法需要合作信源的至少3个方位信息,根据声矢量阵的通道特征,利用特征分解法构造矩阵方程组,通过矩阵运算得到声矢量阵阵元位置和幅相误差参数,从而实现对声矢量阵的校正。大量计算机仿真表明该校正算法具有良好的声矢量阵阵列误差参数估计性能。  相似文献   

15.
This paper develops theory to design higher order directional microphone arrays. The proposed higher order designs have similar inter sensor spacings as traditional first and second order differential arrays. The Jacobi-Anger expansion is used to exploit the underlying structure of microphone signals from pairs of closely spaced sensors. Specifically, the difference and sum of these microphone signals are processed to design the novel directional array.  相似文献   

16.
In the study of in-duct aero-acoustic phenomena two-port analysis based upon measurements has become an important method for the plane wave region. However even at moderate Mach numbers (0.2-0.3) the errors in the results can be hard to suppress. Ways of dealing with this include the use of over-determination methods and methods of obtaining more accurate wavenumbers. Most of the previous published work on this subject deals with the passive (scattering) part of the two-port. In this paper, both the passive and active (sound generating) parts of the two-port are addressed, and different methods for the determination of the source data and the scattering matrix are evaluated. For the source data in the form of a cross spectrum matrix an over-determination method is introduced. Additionally, a method of obtaining the mean Mach number from experimentally determined wavenumbers is described.In order to evaluate the methods measurements are conducted at a mean Mach number of 0.2 for two test cases—an empty duct and a mixer plate inside the duct. The main improvements in the scattering matrix results are achieved by discarding measurements from an abundant set, based upon the measured coherence between excitation and fluctuating pressures. For the source part, it is shown that the error in the magnitude of the source cross spectrum matrix can be significantly suppressed by having additional (>2) reference microphones on each side of the two-port.The mean Mach number obtained from an experimentally determined wavenumber yields more accurate scattering matrix results in both phase and magnitude, than those based upon flow velocity measurements at one point and an assumed flow profile.  相似文献   

17.
Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.  相似文献   

18.
Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was −16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.  相似文献   

19.
A new method to measure the total energy density of waves traveling in opposite directions in ducts is suggested in order to completely eliminate phase errors that lead to bias errors and are difficult to control in industrial tests. Only the auto-power spectral densities are measured by the three microphones. The inversion of a linear system based on a propagation model, where the two opposite waves are partially coherent, makes it possible to obtain the energy density. The sensitivity of this method to errors in the speed of sound, errors of microphone calibration and errors of microphone positions in the duct is analyzed. To complete the study on the robustness of the method, an evaluation of the statistical errors is carried out. The total uncertainty is used to make recommendations on the choice of the experimental parameters. The selection of the frequency limits permits to maintain the measurement uncertainty within a given confidence interval.  相似文献   

20.
This paper revisits a nearfield microphone array technique termed nearfield equivalent source imaging (NESI) proposed previously. In particular, various issues concerning the implementation of the NESI algorithm are examined. The NESI can be implemented in both the time domain and the frequency domain. Acoustical variables including sound pressure, particle velocity, active intensity and sound power are calculated by using multichannel inverse filters. Issues concerning sensor deployment are also investigated for the nearfield array. The uniform array outperformed a random array previously optimized for far-field imaging, which contradicts the conventional wisdom in far-field arrays. For applications in which only a patch array with scarce sensors is available, a virtual microphone approach is employed to ameliorate edge effects using extrapolation and to improve imaging resolution using interpolation. To enhance the processing efficiency of the time-domain NESI, an eigensystem realization algorithm (ERA) is developed. Several filtering methods are compared in terms of computational complexity. Significant saving on computations can be achieved using ERA and the frequency-domain NESI, as compared to the traditional method. The NESI technique was also experimentally validated using practical sources including a 125 cc scooter and a wooden box model with a loudspeaker fitted inside. The NESI technique proved effective in identifying broadband and non-stationary sources produced by the sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号