首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a computational model was developed to model the potential of plasma actuators to reduce flow-induced noise. The model consisted of a viscous flow solver to compute the flow field and a Ffowcs Williams and Hawkings acoustic solver to predict the far-field noise radiation. A velocity-inlet boundary condition was used to model the induced velocity effect of plasma actuators applied to the surface of a bluff body. A test case of the noise radiation from a cylinder in fluid flow was used to validate the model. A comparison between the numerical results and previous experimental results was made. The results confirmed the noise-reduction potential of plasma actuators for bluff-body noise control. Good agreement was made between the numerical and experimental results. It was concluded that the model could be a useful tool to predict the effect of plasma actuation applied to aerodynamic, acoustic, and optimization problems.   相似文献   

2.
Fan is one of the main noise sources of the room air-conditioners. Axial flow fans are widely used in the outdoor unit of split type air-conditioners. The interaction between the fan and the heat exchanger should be taken into consideration. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information of the flow field. This paper is to understand the generation mechanism of sound and to develop a prediction method for the flow field and the acoustic pressure field of the outdoor unit. Acoustic measurement is performed in a semi-anechoic chamber. Effects of each components is analyzed. Based on commercial computational fluid dynamics (CFD) code, Fluent, Fukano’s model is used to predict the overall sound pressure level of broadband noise. The predicted sound pressure levels based on original Fukano’s model are 7.66 dB and 7.42 dB lower than measurement results at 780 rpm and 684 rpm, respectively. And the errors are about 13%. However, when wake width and relative velocity are both calculated by numerical simulations and the distance to blade trailing edge is taken into consideration, the difference of sound pressure level between measurement and prediction is less than 3.4 dB and errors less than 5.5% while the distance is less than 10 mm. Thus, the distance to blade trailing edge should also be an important parameter for Fukano’s model. In comparison with experimental results, it is clearly shown that the Fukano method based on numerical simulation can provide more accuracy than the original Fukano model and numerical results are in a reliable level.  相似文献   

3.
通过风洞试验对某高速动车组整车、受电弓及转向架远场气动噪声特性进行分析。试验结果表明,高速动车组远场气动噪声是一宽频噪声,总声能随速度的6.6次方增加;由受电弓引起的远场气动噪声主要集中在中高频,噪声峰值频率随速度变化线性增加;由转向架引起的远场气动噪声主要集中在中低频,噪声峰值频率与速度无关。在此基础上,通过大涡模拟和声扰动方程获得该高速动车组近场噪声。高速动车组远场噪声测点仿真结果与试验结果的最大差值2.2 dB(A),最大相对误差2.5%,表明仿真模型的准确性。仿真结果表明,车头近场噪声以车头鼻尖为界,底部气动噪声能量大于上部流线型气动噪声能量,其中转向架舱位置噪声能量最大,因此进行车内外降噪方案设计时,应重点关注车头转向架舱位置。  相似文献   

4.
Numerical studies have been carried out to investigate the detailed geometrical effects of full three-dimensional aero-intakes on the radiation of the discrete-frequency rotor-stator interaction noise. The near-field acoustic radiation characteristics and the far-field directivity patterns from the scarf and scoop aero-intakes with three different scarf/scoop angles are quantitatively analyzed and compared. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high-order finite difference scheme, non-reflecting boundary conditions, overset grids and parallel computational methods. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of discrete-frequency noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that the 7 dB noise reduction at downward peak radiation angle can be achieved by using the scoop aero-intake with scoop angle of 15°, and the 5 dB noise reduction by the scarf aero-intake with the scarf angle of 15°. The scattering of the radiating acoustic wave by the background mean flow around the aero-intakes shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect. Overall, the scoop aero-intake was found to be more effective than the scarf and the axisymmetric aero-intakes in view of the lower noise radiation toward ground.  相似文献   

5.
This paper presents a measurement technique for estimating the far-field directivity of the sound radiated from a duct using measurements of acoustic pressure made inside the duct. The technique is restricted to broadband, multi-mode sound fields whose directivity patterns are axi-symmetric, and whose modes are mutually uncorrelated. The technique uses a transfer function to relate the output from an in-duct axial beamformer to measurements of the far-field polar directivity. A transfer function for a hollow cylindrical duct with no flow is derived, and investigated in detail. Transfer functions for practical cases concerning aeroengine exhausts are also presented. The transfer function is shown to be insensitive to the mode-amplitude distribution inside the duct, and hence can be used to predict the directivity in practice where the noise source distribution is unknown. The technique is then validated using a no-flow facility, and is shown to be able to predict variations in the far-field directivity pattern and also estimate the far-field sound pressure levels to within 2 dB. It is suggested that the proposed technique will be especially useful for fan rig experiments, where direct measurement of directivity, for example by use of an anechoic chamber, is impossible.  相似文献   

6.
A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.  相似文献   

7.
We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100?C200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator??s effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ?? 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.  相似文献   

8.
Active noise control has been applied to a variety of systems in order to improve performance without the increases in size and weight that would otherwise be required by traditional passive noise control treatments. This paper investigates the application of an active noise control system to the control of generator noise in the master cabin of a luxury yacht. A multichannel, multi-tonal active noise control system employing loudspeakers and microphones in the master cabin of the yacht is investigated. It is shown that, due to the high number of engine orders produced by the generator, in order to achieve significantly perceptible levels of noise attenuation it is necessary to control at least 7 individual orders. A controller is investigated which targets 19 engine orders and it is shown to achieve in excess of 5 dB broadband attenuation, whilst achieving up to 23 dB attenuation in individual orders. This corresponds to a 23% reduction in the Zwicker loudness.  相似文献   

9.
The effect of distance on the peak sound pressure level and sound exposure level from an SA80 rifle has been investigated. Sound pressure waveforms were measured in two directions from the gun: downrange, from 50 m to 300 m, and to the left-hand side, from 0.3 m to 32 m. Some additional measurements were made to the right of the gun. Measurements made downrange showed three distinct features of the waveform; the shock wave from the supersonic bullet, the reflection from the ground, and the muzzle blast. The time elapsed between the shock wave and the muzzle blast increased with increasing distance: 94 ms for a distance of 50 m, and 507 ms for a distance of 300 m. The highest peak sound level downrange from a single round was between 151 dB(C) and 148 dB(C) at distances from 50 m to 300 m, and varied little if at all with distance. To the left of the gun, the peak sound pressure level of 161 dB(C) at 0.3 m reduced to 128 dB(C) at 32 m. The peak sound pressure level was estimated to be 137 dB(C) at a distance of approximately 20 m to the left-hand side. Hearing protection must therefore be worn by anyone closer than 20 m to a person firing. The peak sound pressure level was estimated to be 135 dB(C) at a distance of approximately 25 m and therefore hearing protection is recommended at distances of up to 25 m. The sound exposure level of 98 dB(A) at 20 m indicated that an observer at this distance could hear about 1440 rounds without hearing protection before the noise exposure reached the upper exposure action value specified in the Control of Noise at Work Regulations 2005. Peak sound pressure levels were on average 2.4 dB higher at the left ear compared with the right ear.  相似文献   

10.
通过数值仿真揭示了开口前缘垂直注入质量流和前壁面平行注入质量流抑制流激孔腔噪声的机制,研究了多参数影响下脉动压力峰值降噪量和总降噪量随质量流注入速度的变化规律。开口前缘垂直注入质量流通过抬升剪切层,避免漩涡冲击开口后缘,抑制流激孔腔噪声脉动压力峰值;在一定范围内质量流注入速度越大,脉动压力峰值降噪量越大,但是低频部分引起的抬升也会越高,导致总降噪量先增大后减小;经优化后的峰值降噪量和总降噪量分别可以达到15 dB和9.5 dB。开口前壁面平行注入质量流则是通过加强开口处剪切层的稳定性,避免发生漩涡脱落,达到抑制流激孔腔噪声的目的;当质量流入口面积大于孔腔开口前壁面积2/3时,不仅可以显著降低流激孔腔噪声脉动压力的峰值,并且可以很好地抑制其它频段噪声的抬升;质量流注入速度为来流速度的0.5倍时,脉动压力峰值降噪量和总降噪量分别可以达到18 dB和15.4 dB。  相似文献   

11.
The study reports on the relevancy and accuracy of using mobile phones in participatory noise pollution monitoring studies in an urban context. During one year, 60 participants used the same smartphone model to measure environmental noise at 28 different locations in Paris. All measurements were performed with the same calibrated application. The sound pressure level was recorded from the microphone every second during a 10-min period. The participants frequently measured the evolution of the sound level near two standard monitoring sound stations (in a square and near a boulevard), which enables the assessment of the accuracy and relevancy of collected acoustic measurements. The instantaneous A-weighting sound level, energy indicators such as LA,eq, LA10, LA50 or LA90 and event indicators such as the number of noise events exceeding a certain threshold Lα (NNEL ? Lα) were measured and compared with reference measurements. The results show that instantaneous sound levels measured with mobile phones correlate very well (r > 0.9, p < 0.05) with sound levels measured with a class 1 reference sound level meter with a root mean square error smaller than 3 dB(A). About 10% of the measurements for the boulevard location (respectively 20% for the square) were inaccurate (r < 0.3, p < 0.05). Nevertheless, mobile phone measurements are in agreement for the LA50 and the LA90 acoustic indicators with the fixed station (4-m high) measurements, with a median deviation smaller than 1.5 dB(A) for the boulevard (respectively 3 dB(A) for the square).  相似文献   

12.
赵晗  贾晗  孙雪聪  杨军 《应用声学》2023,42(2):276-281
该文提出了一种基于薄膜编码超表面的宽频超薄声散射体。利用附加质量块的薄膜和空气腔组成的薄膜结构构建了反射声波相位差接近180°的两种共振单元。将两种共振单元按照一定的顺序进行排列,可以组成深亚波长尺寸下的声学超表面。所构建的声学超表面可以产生宽频有效的散射声场。通过有限元仿真软件对多个频率的近场散射声场分布、远场声指向性和扩散系数进行了仿真计算,仿真结果显示,该散射体可以高效地散射入射声波,并且散射效果在一定的频率范围内是宽频有效的。  相似文献   

13.
The characteristics of various types of refrigerator noise were investigated in an anechoic chamber and in a real living environment - a 100 m2 apartment which is a common size in Korea. It was found that the sound pressure level of the refrigerator noise in the real living room was about 10 dB higher than the level in the anechoic chamber at the same position (1 m in front of refrigerator). In addition, a tolerance level for refrigerator noise was determined by subjective evaluation experiments. Refrigerator noise was presented by a loudspeaker placed in the kitchen where the refrigerator is normally located. Level 2 responses to the subjective evaluation (“hardly perceivable”) corresponded to a sound pressure level of about 26 dB(A), for which 90% of participants were satisfied with the level of refrigerator noise. A semantic differential test using various adjectives was also conducted to evaluate the sound quality of refrigerator noise. With the semantic differential and the factor analysis, adjectives used in this experiment were grouped into three factors. From the results of correlation and multiple regression analyses on the psychoacoustical parameters and subjective evaluations of 30 kinds of refrigerators, sound quality index which predict the subjective rating score were proposed.  相似文献   

14.
Structure-borne noise originating from a heat pump unit was selected to study the influence on subjective annoyance of low frequency noise (LFN) combined with additional sound. Paired comparison test was used for evaluating the subjective annoyance of LFN combined with different sound pressure levels (SPL) of pink noise, frequency-modulated pure tones (FM pure tones) and natural sounds. The results showed that, with pink noise of 250-1000 Hz combined with the original LFN, the subjective annoyance value (SAV) first dropped then rose with increasing SPL. When SPL of the pink noise was 15-25 dB, SAV was lower than that of the original LFN. With pink noise of frequency 250-20,000 Hz added to LFN, SAV increased linearly with increasing SPL. SAV and the psychoacoustic annoyance value (PAV) obtained by semi-theoretical formulas were well correlated. The determination coefficient (R2) was 0.966 and 0.881, respectively, when the frequency range of the pink noise was 250-1000 and 250-20,000 Hz. When FM pure tones with central frequencies of 500, 2000 and 8000 Hz, or natural sounds (including the sound of singing birds, flowing water, wind or ticking clock) were, respectively, added to the original sound, the SAV increased as the SPL of the added sound increased. However, when a FM pure tone of 15 dB with a central frequency of 2000 Hz and a modulation frequency of 10 Hz was added, the SAV was lower than that of the original LFN. With SPL and central frequency held invariable, the SAV declined primarily when modulation frequency increased. With SPL and modulation frequency held invariable, the SAV became lowest when the central frequency was 2000 Hz. This showed a preferable correlation between SAV and fluctuation extent of FM pure tones.  相似文献   

15.
Pass-by noise from high-speed trains is one important area that has to be handled in all new train projects. For the new line between Oslo and the Gardemoen Airport which opened in 1998, very stringent requirements were set out regarding external noise. To reach the target it was decided that the train should be equipped with wheel dampers. Two different types of wheel dampers were used on the train; a ring damper was mounted on the wheels of the driven bogies, whilst plate dampers divided into tuned absorber fins were mounted on the wheels of the trailer bogies.During the type testing of the Airport Express Train, additional measurements were performed in order to evaluate the acoustic effect of the plate wheel dampers. Two test series were performed with the same train set; first with the train in standard configuration and secondly with the wheel dampers removed from the second and third bogie. The external noise was measured at 5 and 25 m distance from the centre of the track at speeds ranging from 80 to 200 km/h. The third-octave filtered time histories were analyzed to calculate the effect of the wheel dampers. As expected, there was a significant reduction of 4-6 dB at frequencies above 2000 Hz, but there was also a reduction of 2 dB for frequencies as low as 800 Hz. This reduction was also found in the parts of the time histories when the rail should be dominating. This implies that the wheel dampers also reduce the rail noise. The total rolling noise reduction for the trailer bogie was 3 dB at 200 km/h and 1 dB at 80 km/h. From comparison with TWINS-calculated sound power levels it was estimated that the wheel noise would be reduced by 5 dB and the rail noise would be reduced by 1 dB at 200 km/h.  相似文献   

16.
In Norway, the requirement for structure borne noise from tunnels is LpAFmax = 32 dB inside dwellings. According to the Norwegian Standard 8175 it is expected that up to 20% of the exposed population are disturbed by the noise at this level. However, the scientific basis for this noise limit is poor. The aim of this study was to determine the degree of annoyance and self-reported sleep disturbances as a function of LpAFmax. In the present study, 521 dwellings exposed to structural sound from railway rock-tunnels were identified. A questionnaire was sent to one randomly selected person above 18 years of age from each dwelling. The results showed that both noise induced annoyance and reported sleep disturbances were significantly related to LpAFmax. Other factors that increased the annoyance were high pass-by frequency of freight trains per day, and degree of sound insulation of the windows. At LpAFmax = 32 dB, 20% were slightly or more than slightly annoyed, and 4% were moderately or more than moderately annoyed. According to the pre-existing assumption that up to 20% of the exposed population are disturbed by the noise at this level, the present results give support to the Norwegian noise limit LpAFmax = 32 dB inside dwellings of structure borne noise from railway tunnels.  相似文献   

17.
The optical transfer function of the far-field superlens imaging system is established in this thesis to make it easy to describe the corresponding relation between the far-field angular spectrum and the near-field object superresolution information. We utilized the established optical transfer function to make detailed research on the imaging characteristics of the far-field superresolution, also reconstruct the near-field nano-information through the far-field angular spectrum, which proves that the resolution of the far-field superlens with structure coupled with metal grating can reach 50 nm, and provides a helpful reference for the study of the new optical microscope imaging of superresolution.  相似文献   

18.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

19.
The fully 3D turbulent incompressible flow around a cylinder and in its wake at a Reynolds number Re = = 9×104 based on the cylinder diameter and Mach number M = 0.1 is calculated using Large Eddy Simulations (LES). Encouraging results are found in comparison to experimental data for the fluctuating lift and drag forces. The acoustic pressure in far-field is commutated through the surface integral formulation of the Ffowcs Williams and Hawkings (FWH) equation in acoustic analogy. Five different sound sources, the cylinder wall and four permeable surfaces in the flow fields, are employed. The spectra of the sound pressure are generally in quantitative agreement with the measured one though the acoustic sources are pseudo-sound regarding the incompressible flow simulation. The acoustic component at the Strouhal number related to vortex shedding has been predicted accurately. For the broad band sound, the permeable surfaces in the near wake region give qualitative enough accuracy level of predictions, while the cylinder wall surface shows a noticeable under-prediction. The sound radiation of the volumetric sources based on Lighthill tensors at vortex shedding is also studied. Its far-field directivity is of lateral quadrupoles with the weak radiations in the flow and cross-flow directions.  相似文献   

20.
Ning Han  Xiaojun Qiu 《Applied Acoustics》2007,68(10):1297-1306
Active noise control systems have been applied to increase the insertion loss of noise barriers where the squared sound pressure or the total acoustic energy density is used as the cost function in previous works. The absolute value of the mean active sound intensity is chosen as the cost function to obtain extra sound insertion loss in the dark area of a hybrid active noise barrier system in this note. The strategy of minimizing the near-field sound intensity at discrete locations along the edge of the passive barrier is shown to be able to provide better far-field noise reduction than that of minimizing the squared sound pressure control. Both numerical simulations and off-line experiments are carried out with a three-channel demonstration system, where the locations of the secondary sources and the error sensors are optimized and comparisons are made between the extra sound pressure attenuation of the sound intensity control and that of the squared sound pressure control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号