首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
The ball-milled Fe-Si alloy was used as feedstock for deposition of nanocrystalline Fe-Si by cold spraying process. The microstructure of the as-sprayed nanostructured Fe-Si was characterized by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The grain sizes of the feedstock and as-sprayed deposit were estimated based on X-ray diffraction analysis. The microhardness and coercivity of the deposited Fe-Si alloy were characterized. The results showed that the as-sprayed deposit presented a dense microstructure. The mean grain size of the as-deposited Fe-Si was several tens nanometers and comparable to that of the corresponding milled feedstock. The temperature of driving gas presented little effect on the microstructure of cold-sprayed nanostructured Fe-Si deposit. The mechanical alloying induced oxygen contents up to 8 wt% in the feedstocks and subsequent deposits. The microhardness of the deposit reached about 400 Hv. The deposit achieved a high coercivity up to 190 kA/m indicating the potential possibility for applications to recording materials.  相似文献   

2.
The negative templating synthesis process has been applied to prepare nanostructured carbon materials with a high nitrogen content. SBA-15 silica template was impregnated with the following carbon precursors: sucrose, glucose and amino-glucose. The structure of the materials was investigated by SAXS, WAXS and TEM. Nitrogen functions were analyzed by XPS and the textural parameters of the carbons were studied by nitrogen and CO2 adsorption. X-ray and TEM studies confirmed that a pore nanostructure is inherited from the silica templates. XPS analysis showed that the nitrogen content of the materials can be controlled between 2 and 5 wt% and that N atoms are strongly bonded in the carbon structure in heterocycles or nitrile functions. An important result is that these nanostructured carbon materials exhibits interesting textural properties with BET surface areas ranging between 1000 and . Moreover, the study of the influence of nitrogen on the textural and structural parameters of the resulting carbon materials shows that nitrogen plays an active role during the synthesis process. This observation is also supported by the speciation of nitrogen in the nanostructured carbon materials.  相似文献   

3.
铝纳米晶的低温导电特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
孙丽俊  代飞  罗江山  易勇  杨蒙生  张继成  黎军  雷海乐 《物理学报》2016,65(13):137303-137303
采用真空热压技术将电磁感应加热-自悬浮定向流法制备的铝纳米粉末压制成块体样品.通过X射线衍射、透射电子显微镜、扫描电子显微镜及X射线能谱分析了铝纳米晶的微观结构,并用四探针法测量了不同温度下(8—300 K)样品的电阻率,研究了铝纳米晶的电阻率(ρ)随温度的变化规律.结果表明:由于晶界(非晶氧化铝)对电子的散射以及晶界声子对电子的散射效应,低温(40 K)下,铝纳米晶的本征电阻率随温度变化关系明显不同于粗晶铝,不仅呈现出T~4变化,还表现出显著的T3变化规律.因晶界等缺陷和非晶氧化铝杂质对电子的散射,铝纳米晶残余电阻率比粗晶铝电阻率大5—6个数量级.  相似文献   

4.
The microstructure in nanostructured (NS) materials synthesized by different methods have been characterized by electron microscopy methods. NS-Pd was prepared by inert-gas condensation and in situ compacting method (IGCC), NS-alloys by amorphous crystallization method (ACM) and NS-Cu and Cu100-xFe(x) alloy by mechanical alloying (MA) methods. The experimental results have revealed that different preparation techniques lead to different microstructures. The grain boundaries have ordered and disordered structures and high density of defects were frequently detected in NS-materials synthesized by IGCC and MA. For the NS-alloys produced by ACM, however, the structures of GBs are similar to those in coarse-grained materials and the grains have nearly perfect crystal structure. For immiscible systems, a supersaturated Fe-Cu solid solution can be obtained by MA, but it is difficult using IGCC.  相似文献   

5.
The 3-dimensional atom probe (3DAP) has been used to provide atomic-scale microcharacterisation of a number of nanostructured materials. Grain boundary segregation has been investigated in electrodeposited nanocrystalline nickel and Ni-P. In the nanocrystalline nickel, there was no observable grain boundary segregation in the as-deposited condition. After annealing, carbon and sulphur contamination was found at the boundary of an abnormally-grown grain. In the as-deposited Ni-P alloy, only limited grain boundary segregation of P is seen, but annealing produces significant segregation and the formation of Ni3P precipitates at grain boundaries. The phase chemistry in a melt-spun amorphous Fe-Si-Cu-Nb-B-Al (FINEMET-type) alloy has also been studied, and the hetereogeneous nucleation of Fe-Si nanocrystals at Cu precipitates shown conclusively. It is found that at early stages of crystallisation, there is only limited partitioning of the Si between the nanocrystals and the amorphous matrix. Atom probe studies of thin layered films have historically been limited by specimen preparation problems, but recent advances have now yielded data on metallic multilayer films. This has allowed atomic-scale measurements of interface chemistry in these films for the first time.  相似文献   

6.
The main aim of the present work is to study the synthesis and stability of soft-magnetic nanostructured materials under high pressure-high temperature conditions. HITPERM alloy powders were prepared by high-energy ball-milling. The as-milled alloys consist of an iron-based nanocrystalline solid solution. The evolution of crystallinity and grain-size during the ball-milling process and investigations under external pressure up to 3 GPa for temperatures up to 1200 °C were evaluated using synchrotron radiation X-ray diffraction.  相似文献   

7.
Nanostructured Bi2S3 was hydrothermally produced from Bi2O3 and thiocarbohydrazide in acidic solutions containing PVA, PEG and PVP. By using XRD, SAED and Raman spectrometry, the products were orthorhombic Bi2S3, with four vibration modes at 139.6, 253.7, 310 and 968.9 cm−1. The phase was also in accordance with the diffraction patterns obtained by simulation. SEM, TEM and HRTEM show that the products are clusters of nanorods produced in polymer-free solution, and nanostructured flowers of nanospears, nanorods and nanoplates in the respective PVA-, PEG- and PVP-added solutions, with their growths in the same direction of [0 0 1]. A formation mechanism was also proposed according to their phase and morphologies.  相似文献   

8.
The kinetics of ordering in nanostructured CoPt particles is investigated. The low activation energy (58 ± 2 kJ/mol) of the ordering process indicates that the kinetics of ordering is not limited by bulk diffusion. Coercivity grows along with the degree of ordering and reaches its maximum value of 14.2 kOe upon the complete ordering of CoPt alloy with a crystallite size of no more than that of a single domain.  相似文献   

9.
郑海涛  代飞  张莉莉  罗江山  林伟  王凯  易勇  雷海乐 《强激光与粒子束》2018,30(12):124101-1-124101-6
为了深入理解纳米Al-Ni合金低温下的电子输运过程,使用自主研发的电磁感应加热-自悬浮定向流法制备出Al,Ni和Al-Ni纳米合金粉末,并采用真空热压设备将纳米粉末压制成纳米晶块体,利用自主搭建的低温热电测量系统研究了Al-Ni纳米合金的电阻率随温度(8~300 K)的变化规律。研究结果表明:Al-Ni纳米合金由于形成有序晶相而仍然与Al,Ni纳米晶一样,电阻率随温度的降低而降低。纳米Ni3Al-Ni和NiAl-Ni在居里温度点附近出现了电阻率随温度变化的极大值点,因为单质Ni的影响,Ni3Al-Ni的居里温度比粗晶Ni3Al提高了20 K。由于磁子-电子散射作用和声子-电子散射作用,纳米Ni3Al-Ni,NiAl-Ni和Ni的电阻率在低温下(8~40 K)与温度呈T2和T4关系。  相似文献   

10.
We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature.  相似文献   

11.
冯涛  Horst Hahn  Herbert Gleiter 《物理学报》2017,66(17):176110-176110
迄今为止,人类社会新技术的发展主要是基于各种晶体材料(如金属、半导体等)的应用.晶体材料的性能可以通过改变它们的微观缺陷结构和/或微观化学结构来调控,但这对于当前的非晶材料而言却是难以实现的.新型的纳米结构非晶材料可以通过引入大量的非晶/非晶界面来改变非晶材料的微观缺陷结构和/或微观化学结构,从而实现对其性能的调控.本文主要讨论了目前纳米结构非晶合金材料的研究进展,包括其制备方法、结构特征和新性能.通过利用这些新特性,有可能会开启一个基于非晶材料的新技术时代.  相似文献   

12.
The nanostructured powders of the Ni95.4Mo4.6 and Ni99Mo1 alloys (average crystallite dimensions of 14 and 21 nm) were obtained by the electrochemical deposition from ammonium solutions of nickel and molybdenum salts. The method of differential scanning calorimetry (DSC) and measurement of temperature dependence of the powder's electrical resistivity, magnetic permeability and the thermoelectromotive force were employed to examine structural changes of the powders. The nanocrystalline alloys Ni95.4Mo4.6 and Ni99Mo1 were stable up to about 460 K. The thermal stabilization of the alloys takes place within the temperature interval of 460–570 K. As a result of this process, a decrease in the electrical resistivity and increases in magnetic permeability as well as electron state density in the proximity of the Fermi level are observed. The crystallization temperature depends upon the current density of powder formation. The nanocrystalline alloy Ni95.4Mo4.6 obtained at j=70 mA cm−2 becomes crystallized in the temperature range between 650 and 840 K, while the Ni99Mo1 alloy obtained at j=180 mA cm−2 crystallizes in the 580–950 K temperature interval. The electrical resistivity and magnetic permeability of the nanocrystalline alloy decreased while the alloy's electron state density near the Fermi level increased after the process of crystallization took place. The electrical resistivity decrease recorded during the structural changes was due to an increase in the electron state density in the proximity of the Fermi level, as well as to an increase in the mean free path of the conducting electrons.  相似文献   

13.
A thermal plasma process for the synthesis of nanoparticles and their immediate assembly into nanostructured films is discussed. In this process, known as hypersonic plasma particle deposition, a thermal plasma with injected precursors is expanded through a nozzle to nucleate nanoparticles, which are then inertially deposited onto a cooled substrate in vacuum. A lightly consolidated nanostructured film results. Particle and film diagnostics along with images of the plasma flow are used to explain the formation of nanostructured silicon carbide films by this process  相似文献   

14.
Based on the thermodynamic and thermophysical properties of bulk materials, Gibbs free energy for nanostructured materials is obtained and used to study the size-dependent melting point depression phenomenon. The effects of volume change due to fusion, the thermal expansion and the temperature dependency of surface free energy of bulk materials on the melting point depression are investigated. Conversely, the solid surface free energy of bulk materials is also researched by means of the size-dependent melting temperature of nanostructured materials.  相似文献   

15.
Amorphous and nanocrystalline materials have attracted much interest in the field of new materials design because of their excellent mechanical and physical properties as well as their magnetic properties. In this work, Fe–40Al coatings were prepared from nanostructured feedstock with a very low degree of order using atmospheric plasma spraying. Scanning electron microscopy, X-ray diffraction, and magnetic measurements were used to investigate microstructure, phase structure, and magnetic properties of the coatings. The results showed that Fe–40Al coating presented a ferromagnetic character due to partial structure with a low degree of order and unmelted nanostructured particles retained from the feedstock. Moreover, the heterogeneous magnetic properties were found in the parallel and vertical direction of the coating.  相似文献   

16.
刘雪梅  刘国权  李定朋  王海滨  宋晓艳 《物理学报》2014,63(9):98102-098102
本文针对Sm3Co粗晶和纳米晶合金材料的制备和基础性能进行了研究.采用磁悬浮熔炼技术多次精炼制备出Sm3Co粗晶合金.以此为母材,利用高能球磨非晶化和放电等离子烧结致密化并同步晶化的技术路线,制备出平均晶粒尺寸为8 nm的超细纳米晶Sm3Co合金块体材料.构建了Sm3Co纳米晶合金的晶体结构模型,并结合其显微组织的表征,分析了Sm3Co纳米晶合金的磁性能和力学性能,并与粗晶合金进行了比较粗晶Sm3Co合金不具有硬磁特性,而同种成分的纳米晶合金则表现出一定的硬磁特性.纳米晶Sm3Co合金的显微硬度和弹性模量分别达到4.87 GPa和63.7 GPa,比粗晶合金增大约8.7%和13.3%.本文研究结果为Sm-Co体系合金的基础性能及其纳米尺度效应提供了系统的参考依据.  相似文献   

17.
纳米WO3块体材料的电致变色效应   总被引:2,自引:0,他引:2       下载免费PDF全文
羊新胜  王豫  董亮  张锋  齐立桢 《物理学报》2004,53(8):2724-2727
WO3薄膜能够通过电、光、热变色.实验发现纳米WO3块材具有明显的常规块材不具有的电致变色特性,即当样品中有电流通过时,样品从负极到正极颜色由黄色变为深蓝色.变色前后样品的显微形貌和相结构都没有明显变化.x射线光电子能谱说明变色后的样品中出现了低价的钨离子(W5+).根据实验结果,变色过程被认为是一种电子注入效应.纳米样品中的高价钨离子(W6+)因为纳米材料的表面效应而具有足够大的活性,能与电子结合生成低价的离子,从而使样品变色. 关键词: WO3块材 纳米材料 电致变色  相似文献   

18.
WO3薄膜能够通过电、光、热变色 .实验发现纳米WO3块材具有明显的常规块材不具有的电致变色特性 ,即当样品中有电流通过时 ,样品从负极到正极颜色由黄色变为深蓝色 .变色前后样品的显微形貌和相结构都没有明显变化 .x射线光电子能谱说明变色后的样品中出现了低价的钨离子 (W5 ) .根据实验结果 ,变色过程被认为是一种电子注入效应 .纳米样品中的高价钨离子 (W6 )因为纳米材料的表面效应而具有足够大的活性 ,能与电子结合生成低价的离子 ,从而使样品变色  相似文献   

19.
青铜器锈蚀研究能够揭示出青铜器腐蚀机理,为制定科学的保护措施提供重要的参考资料。目前,青铜器锈蚀研究主要从其外部锈蚀产物入手,通过锈蚀组成结构分析,探讨其腐蚀机理。本文选择了保存较好青铜器本体样品进行了内部锈蚀情况研究。首先采用金相制备技术,通过打磨、抛光和超声清洗处理后,制备了断面相组织形态清晰的24件秦早期青铜器青铜本体样品。然后利用共聚焦显微拉曼光谱仪对样品夹杂物进行了光谱学研究,发现其物相为PbCO3和PbO及Cu2O,都属于常见的青铜合金腐蚀产物。样品金相组织中圆形或者大面积无规则亮灰色区域为Cu2O,反映出青铜器表面不仅易于形成一定厚度Cu2O锈蚀层,在相界之间也容易发生氧化反应生成Cu2O,存在合金内部和外部同时发生腐蚀生成赤铜矿锈蚀的情况。此外,拉曼光谱分析显示黑灰色物质主要为铅腐蚀产物——PbCO3和PbO,反映出铅元素的腐蚀过程:Pb→PbO→PbCO3。在铸造态青铜合金组织中,铅一般呈近圆形颗粒状态分布在相界之间。青铜器内部分布的铅颗粒在土壤埋藏环境中会发生氧化反应生成PbO,再与地下水中溶解的CO2-3发生化学反应生成比较稳定的PbCO3。结果表明:外界腐蚀因素(水、溶解氧和碳酸根等)能够通过合金中相界间通道进入青铜器内部,在相界表面逐步发生反应形成以金属氧化物为主的腐蚀产物。  相似文献   

20.
The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号