首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B{\mathcal{B}} and B-\frac12,\frac124{\mathcal{B}^{-\frac12,\frac12}_4} (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data u0 = (u0h, u03){u_0 = (u_0^h, u_0^3)} which satisfies ||u0h||B exp(\fracCn4 ||u03||B4) £ c0n{\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu} or ||u0h||B-\frac12,\frac124 exp(\fracCn4 ||u03||B-\frac12,\frac1244) £ c0n{\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu} for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, [(Lpt)\tilde](B){\widetilde{L^p_t}(\mathcal{B})}, we introduced here sort of weighted Chemin-Lerner type spaces, [(L2t, f)\tilde](B){\widetilde{L^2_{t, f}}(\mathcal{B})} for some apropriate L 1 function f(t).  相似文献   

2.
We examine the asymptotic behavior of the eigenvalue w(h) and corresponding eigenfunction associated with the variational problem m(h) o infy ? H1(W;C ) \fracòW \abs(i?+hA)y2 dx dy òW\absy2 dx dy \mu(h)\equiv\inf_{\psi\in H^{1}(\Omega;{\bf C} )} \frac{\int_{\Omega } \abs{(i\nabla+h{\bf A})\psi}^{2}\,dx\,dy} {\int_{\Omega }\abs{\psi}^{2}\,dx\,dy} in the regime h>>1. Here A is any vector field with curl equal to 1. The problem arises within the Ginzburg-Landau model for superconductivity with the function w(h) yielding the relationship between the critical temperature vs. applied magnetic field strength in the transition from normal to superconducting state in a thin mesoscopic sample with cross-section W ì \R2\Omega\subset\R^{2}. We first carry out a rigorous analysis of the associated problem on a half-plane and then rigorously justify some of the formal arguments of [BS], obtaining an expansion for w while also proving that the first eigenfunction decays to zero somewhere along the sample boundary ?W\partial \Omega when z is not a disc. For interior decay, we demonstrate that the rate is exponential.  相似文献   

3.
In this paper we obtain violations of general bipartite Bell inequalities of order \({\frac{\sqrt{n}}{\log n}}\) with n inputs, n outputs and n-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.  相似文献   

4.
We consider a fixed quantum measurement performed over n identical copies of quantum states. Using a rigorous notion of distinguishability based on Shannon’s 12th theorem, we show that in the case of a single qubit, the number of distinguishable states is , where (α12) is the angle interval from which the states are chosen. In the general case of an N-dimensional Hilbert space and an area Ω of the domain on the unit sphere from which the states are chosen, the number of distinguishable states is . The optimal distribution is uniform over the domain in Cartesian coordinates.  相似文献   

5.
The perturbation method of Lindstedt is applied to study the non linear effect of a nonlinear equation $$\nabla ^2 {\rm E} - \frac{1}{{c^2 }}\frac{{\partial ^2 {\rm E}}}{{\partial t^2 }} - \frac{{\omega _0^2 }}{{c^2 }}{\rm E} + \frac{{2v}}{{c^2 }}\frac{{\partial {\rm E}}}{{\partial t}} + E^2 \left[ {\frac{{\partial {\rm E}}}{{\partial t}} \times A} \right] = 0,$$ where (A. E)=0 andA,c, ω 0 andν are constants in space and time. Amplitude dependent frequency shifts and the solution up to third order are derived.  相似文献   

6.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

7.
In this paper we generalize the explicit formulas for constant mean curvature (CMC) immersion of hypersurfaces of Euclidean spaces, spheres and hyperbolic spaces given in Perdomo (Asian J Math 14(1):73–108, 2010; Rev Colomb Mat 45(1):81–96, 2011) to provide explicit examples of several families of immersions with constant mean curvature and non constant principal curvatures, in semi-Riemannian manifolds with constant sectional curvature. In particular, we prove that every h ? [-1,-\frac2?{n-1}n)h\in[-1,-\frac{2\sqrt{n-1}}{n}) can be realized as the constant curvature of a complete immersion of S1n-1×\mathbbRS_1^{n-1}\times \mathbb{R} in the (n + 1)-dimensional de Sitter space S1n+1\hbox{\bf S}_1^{n+1}. We provide 3 types of immersions with CMC in the Minkowski space, 5 types of immersion with CMC in the de Sitter space and 5 types of immersion with CMC in the anti de Sitter space. At the end of the paper we analyze the families of examples that can be extended to closed hypersurfaces.  相似文献   

8.
We give here a new exact solution to the exterior Einstein field equations for a rotating infinite cylinder. The solution is characterized by an everywhere singular metric. In the Papapetrou canonical coordinates, the 3-force acting on a radially moving test particle is $f^\alpha = \left( {G\frac{m}{{\sqrt {\Gamma - \upsilon ^2 } }}{\text{ }}\frac{\lambda }{\rho },{\text{ 0,}} - \frac{m}{{\sqrt {\Gamma - \upsilon ^2 } }}{\text{ }}\frac{{C\upsilon }}{\rho }{\text{ }}} \right)$ where λ>0.f 1 andf 3 are, respectively, the gravitational and Coriolis forces. The gravitational force is, therefore, repulsive.  相似文献   

9.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

10.
LetS ?=??Δ+V, withV smooth. If 0<E 2V(x), the spectrum ofS ? nearE 2 consists (for ? small) of finitely-many eigenvalues,λ j (?). We study the asymptotic distribution of these eigenvalues aboutE 2 as ?→0; we obtain semi-classical asymptotics for $$\sum\limits_j {f\left( {\frac{{\sqrt {\lambda _j (\hbar )} - E}}{\hbar }} \right)} $$ with \(\hat f \in C_0^\infty \) , in terms of the periodic classical trajectories on the energy surface \(B_E = \left\{ {\left| \xi \right|^2 + V(x) = E^2 } \right\}\) . This in turn gives Weyl-type estimates for the counting function \(\# \left\{ {j;\left| {\sqrt {\lambda _j (\hbar )} - E} \right| \leqq c\hbar } \right\}\) . We make a detailed analysis of the case when the flow onB E is periodic.  相似文献   

11.
We explore the time-evolution law of the optical field of degenerate parametric amplifier (DPA) in dissipative channel. It turns out that its density operator at initial time ρ 0 = A exp(E ? a ?2) exp(a ? alnλ) exp(E a 2) evolves into \(\rho (t)= \frac {A}{\lambda ^{\prime }}\) \(\exp \left (\frac {E^{\ast }e^{-2\kappa t}a^{\dag 2}}{ \lambda ^{\prime 2}}\right )\exp \left \{a^{\dag }a\ln \frac {[\lambda -(\lambda ^{2}-4|E|^{2})T]e^{-2\kappa t}}{\lambda ^{\prime 2}}\right \} \exp \left (\frac { Ee^{-2\kappa t}a^{2}}{\lambda ^{\prime 2}}\right ),\) where κ is the damping constant of the channel, T = 1 ? e ?2κt , and \(\lambda ^{\prime }\equiv \sqrt {(1-\lambda T)^{2}-4|E|^{2}T^{2}}.\) We employ the method of integration (or summation) within an ordered (normally ordered or antinormally ordered) of operators to overcome the obstacles in the process of calculation.  相似文献   

12.
We study the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system in the presence of intrinsic decoherence. The usefulness of such a system for performance of the quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation protocol T1\mathcal{T}_1 is also investigated. The results depend on the initial conditions and the parameters of the system. The roles of system parameters such as the inhomogeneity of the magnetic field b and the spin-orbit interaction parameter D, in entanglement dynamics and fidelity of teleportation, are studied for both product and maximally entangled initial states of the resource. We show that for the product and maximally entangled initial states, increasing D amplifies the effects of dephasing and hence decreases the asymptotic entanglement and fidelity of the teleportation. For a product initial state and specific interval of the magnetic field B, the asymptotic entanglement and hence the fidelity of teleportation can be improved by increasing B. The XY and XYZ Heisenberg systems provide a minimal resource entanglement, required for realizing efficient teleportation. Also, in the absence of the magnetic field, the degree of entanglement is preserved for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.. The same is true for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right., in the absence of spin-orbit interaction D and the inhomogeneity parameter b. Therefore, it is possible to perform quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation T1\mathcal{T}_1, with perfect quality, by choosing a proper set of parameters and employing one of these maximally entangled robust states as the initial state of the resource.  相似文献   

13.
Editorial     
The production of charmed mesons ,D ± , andD is studied in a sample of 478,000 hadronicZ decays. The production rates are measured to be
  相似文献   

14.
In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: $$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$ v · ? x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) $$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$ F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ? Ω , ( 0.2 ) where Ω is a bounded domain in ${\mathbf{R}^{d}, 1 \leq d \leq 3}$ R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and ${\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}$ μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for ${|\theta -\theta_{0}|\leq \delta \ll 1}$ | θ - θ 0 | ≤ δ ? 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion ${F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}$ F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.  相似文献   

15.
We prove the existence of bubbling solutions for the following Chern-Simons-Higgs equation:
$ \Delta u +\frac{1}{\varepsilon^2} e^u(1-e^u) =4\pi \sum_{j=1}^N \delta_{p_j},\quad {\rm in} \, \Omega, $ \Delta u +\frac{1}{\varepsilon^2} e^u(1-e^u) =4\pi \sum_{j=1}^N \delta_{p_j},\quad {\rm in} \, \Omega,  相似文献   

16.
Let (T, H) be a weak Weyl representation of the canonical commutation relation (CCR) with one degree of freedom. Namely T is a symmetric operator and H is a self-adjoint operator on a complex Hilbert space satisfying the weak Weyl relation: for all (the set of real numbers), eitH D(T) ⊂ D(T) (i is the imaginary unit and D(T) denotes the domain of T) and . In the context of quantum theory where H is a Hamiltonian, T is called a strong time operator of H. In this paper we prove the following theorem on uniqueness of weak Weyl representations: Let be separable. Assume that H is bounded below with and , where is the set of complex numbers and, for a linear operator A on a Hilbert space, σ(A) denotes the spectrum of A. Then ( is the closure of T) is unitarily equivalent to a direct sum of the weak Weyl representation on the Hilbert space , where is the multiplication operator by the variable and with . Using this theorem, we construct a Weyl representation of the CCR from the weak Weyl representation . This work is supported by the Grant-in-Aid No.17340032 for Scientific Research from Japan Society for the Promotion of Science (JSPS).  相似文献   

17.
We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to ?). For β large enough we show that for any ${\varepsilon >0 }We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to −). For β large enough we show that for any ${\varepsilon >0 }${\varepsilon >0 } there exists c=c(b,e){c=c(\beta,\varepsilon)} such that the corresponding mixing time T mix satisfies limL?¥ P(Tmix 3 exp(cLe)) = 0{{\rm lim}_{L\to\infty}\,{\bf P}\left(T_{\rm mix}\ge {\rm exp}({cL^\varepsilon})\right) =0}. In the non-random case τ ≡ +  (or τ ≡ −), this implies that Tmix £ exp(cLe){T_{\rm mix}\le {\rm exp}({cL^\varepsilon})}. The same bound holds when the boundary conditions are all +  on three sides and all − on the remaining one. The result, although still very far from the expected Lifshitz behavior T mix = O(L 2), considerably improves upon the previous known estimates of the form Tmix £ exp(c L\frac 12 + e){T_{\rm mix}\le {\rm exp}({c L^{\frac 12 + \varepsilon}})}. The techniques are based on induction over length scales, combined with a judicious use of the so-called “censoring inequality” of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.  相似文献   

18.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

19.
In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: $$ i\frac{\rm d}{{\rm d}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t)\quad \varepsilon > 0\,\quad V\in L^1(\mathbb{R},(1+|x|){\rm d}x) \cap L^\infty(\mathbb{R}).$$ This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: $$ i\frac{{\rm d}}{{\rm d}t} \psi(t) =H_{\alpha} \psi(t) .$$ where H α is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\rm d}x}\) . The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if V ≥  0 and for every  \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number N of concentration points.  相似文献   

20.
We have calculated analytically the superheating fieldH sh for bulk superconductors, correct to second order in. We find , which agrees well with numerical computations for<0.5. The surface order parameter is , and the penetration depth is .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号