首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A white light-emitting device has been fabricated with a structure of ITO/m-MTDATA (45 nm)/NPB (10 nm)/DPVBi (8 nm)/DPVBi:DCJTB 0.5% (15 nm)/BPhen (x nm)/Alq3 [(55−x) nm]/LiF (1 nm)/Al, with x=0, 4, and 7. BPhen was used as the hole-blocking layer. This results in a mixture of lights from DPVBi molecules (blue-light) and DCJTB (yellow-light) molecules, producing white light emission. The chromaticity can be readily adjusted by only varying the thickness of the BPhen layer. The CIE coordinates of the device are largely insensitive to the driving voltages. When the thickness of BPhen is 7 nm, the device exhibits peak efficiency of 6.87 cd/A (3.59 lm/W) at the applied voltage of 6 V, the maximum external quantum efficiency ηext=2.07% corresponding to 6.18 cd/A, and the maximum brightness is 18494 cd/m2 at 15 V.  相似文献   

2.
White organic light-emitting devices (WOLEDs) with Mg:Ag/Alq3/Alq3:DCJTB/Alq3/DPVBi/α-NPD/ITO and Mg:Ag/Alq3/DPVBi:DCJTB/Alq3/DPVBi/α-NPD/ITO structures were fabricated with three primary-color emitters of red, green, and blue by using organic molecular-beam deposition. Electroluminescence spectra showed that the dominant white peak for the WOLEDs fabricated with host red-luminescence Alq3 and DPVBi layers did not change regardless of variations in the current. The Commission Inernationale de l'Eclairage (CIE) chromaticity coordinates for the two WOLEDs were stable, and the WOLEDs at 40 mA/cm2 with luminances of 690 and 710 cd/cm2 showed an optimum white CIE chromaticity of (0.33, 0.33). While the luminance yield of the WOLED fabricated with a host red-luminescent Alq3 emitting layer below 30 mA/cm3 was larger than that of the WOLED fabricated with a DPVBi layer, above 30 mA/cm2, the luminance yield of the WOLED fabricated with the DPVBi layer was higher than that of the WOLED with the Alq3 layer and became more stable with increasing current density. These results indicate that WOLEDs fabricated with a host red-luminescence DPVBi layer without any quenching behavior hold promise for potential applications in backlight sources in full-color displays.  相似文献   

3.
For the high luminance and quantum efficiency, we propose a novel structure of white organic light-emitting diode (WOLED) using two white emissive layers (EML). The host material of MADN with the blue dopant of BCzVBi and the red dopant of DCJTB was used for one EML and DPVBi as host material with those dopants for the other EML. By considering the order of the EMLs and their energy band gaps in the device structure, the charge carrier trapping can be generated. They play a role in the barrier function at the EML enhancing the recombination where the holes and electrons were trapped in the DPVBi and MADN. The quantum efficiency can be improved by the charge carrier trapping in the WOLED with the double white EMLs as obtaining 4.23% at 10 mA/cm2, and it is vastly superior to that of the WOLED with a single EML. White color balance is also excellent with color coordinates of (0.36, 0.34) in the CIE 1931 (x, y) chromaticity diagram.  相似文献   

4.
Characterization of two-emitter WOLED with no additional blocking layer   总被引:1,自引:0,他引:1  
Wenbin Chen  Lili Lu  Jianbo Cheng 《Optik》2010,121(1):107-680
In this paper, white organic light emitting diodes (WOLEDs) utilizing two primary-color emitters with no additional blocking layer are fabricated. With a structure of ITO/2TNATA (20 nm)/NPB (20 nm)/NPB: rubrene (2%) (10 nm)/ADN (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (100 nm), a white light with CIE coordinates of (0.344, 0.372) is generated at a current density of 30 mA/cm2 and the electroluminescence (EL) spectra consist of two broad bands around 456 nm (ADN) and 556 nm (NPB:rubrene). The device shows the low turn-on voltage and bright white emission with a power efficiency of 2.3 lm/W at a luminance of 100 cd/m2. Through control of the location of the recombination zone and energy transfer, a stable white light emission is achieved. The maximum color shift is less than 0.02 units on the 1931 CIE x,y chromaticity diagram. Given the spectral power distribution of WOLED, the parameters of a light source (chromaticity coordinate, CCT, CRI, and the luminous efficacy) can be calculated. A MATLAB program for this purpose is developed in this paper. Based on this, the design of WOLED for an illumination and display system using a white emitter with color filter arrays is discussed.  相似文献   

5.
The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq3) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N′,C4) (acetyl acetonate) (Ir(C6)2(acac)), as a sensitizer. The device has a sandwiched structure of indium tin oxide (ITO)/4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine (T-NATA) (40 nm)/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′ diamine (NPB) (40 nm)/Alq3:DCJTB (0.7 wt%):Ir(C6)2(acac) (0.3 wt%) (40 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (120 nm). It can be seen that the current efficiencies of this device remained almost (13.8±1) cd/A from 0.1 to 20,000 cd/m2 and the Commission International d’Eclairage (CIE) coordinates at (0.60, 0.37) in the range of wide brightness. The significant improvement was attributed to the sensitization effect of the doped Ir(C6)2(acac), thus the energy of singlet and triplet excitons is simultaneously transferred to the DCJTB.  相似文献   

6.
Efficient white organic light-emitting diodes (WOLEDs) are fabricated with a thin layer of 9,10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene as the source of white emission. A device with the structure of ITO/NPB (70 nm)/ADN: 0.5% Rubrene (30 nm)/Alq3 (50 nm)/MgAg shows a maximum current efficiency of 3.7 cd/A, with the CIE coordinates of x=0.33, y=0.43. The EL spectrum of the devices and the CIE coordinates remains almost the same when the voltage is increased from 10 to 15 V and the current efficiency remains quite stable with the current density increased from 20 to 250 mA/cm2.  相似文献   

7.
白色有机发光器件及其稳定性   总被引:8,自引:8,他引:0  
报道了一种稳定的白色有机薄膜电致发光器件.电流效率6cd/A,在电流密度20mA/cm2驱动下,亮度为1026cd/m2;最高亮度21200cd/m2,色度(x=0.32,y=0.40).该器件具有较平稳的效率电流关系,即具有弱的电流荧光猝灭.初始亮度100cd/m2下,半亮度寿命达22245h.  相似文献   

8.
We investigated solution-processed films of 4,4′-bis(2,2-diphenylvinyl)-1,1′-bibenyl (DPVBi) and its blends with N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m2, a maximum luminance of 22500 cd/m2, and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.  相似文献   

9.
In this paper, a new white organic light-emitting device (WOLED) with multilayer structure has been fabricated. The structure of devices is ITO/N, N-bis-(1-naphthyl)-N, N-diphenyl-1, 1′-biphenyl-4, 4′-diamine (NPB) (40 nm)/NPB: QAD (1%): DCJTB (1%) (10 nm) /DPVBi (10 nm) /2, 9-dimethyl, 4, 7-diphenyl, 1, 10-phenanthroline (BCP) (d nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50-d nm)/LiF (1 nm)/Al (200 nm). In our devices, a red dye 4-(dicyanomethylene)-2-t-butyl-6 (1, 1, 7, 7-tetramethyl julolidyl-9-enyl)-4H-pyran (DCJTB) and a green dye quinacridone (QAD) were co-doped into NPB. The device with 8 nm BCP shows maximum luminance of 12 852 cd/m2 at 20 V. The current efficiency and power efficiency reach 9.37 cd/A at 9 V and 3.60 lm/W at 8 V, respectively. The thickness of the blocking layer permit the tuning of the device spectrum to achieve a balanced white emission with Commission International de’Eclairage (CIE) chromaticity coordinates of (0.33,0.33). The CIE coordinates of device change from (0.3278, 0.3043) at 5 V to (0.3251, 0.2967) at 20 V that are well in the white region, which is largely insensitive to the applied bias.  相似文献   

10.
用蓝色有机荧光材料N6,N6,N12,N12-tetrap-tolylchrysene-6,12-diamine (DNCA)作为发光层,在发光层中间以及发光层与电子传输层之间插入2-methyl-9,10-di(2-napthyl)anthracene (MADN) 和9,10-di(2-naphthyl)anthracene (ADN) 作为电荷控制层,制备了结构为ITO/NPB(40 nm)/DNCA(15 nm)/MADN(3 nm)/DNCA(15 nm)/ADN(3 nm)/Bphen(30 nm)/LiF(0.8 nm)/Al(120 nm)的蓝色有机电致发光器件(OLED)。该器件的最大电流效率和最大亮度分别为5.6 cd/A和23 310 cd/m2。与传统的单发光层器件相比,最大电流效率和最大亮度分别提高了70%和87%。器件发光性能的提高可归结于两个电荷控制层在整个器件中的协同作用。第一电荷控制层MADN的作用主要是将发光层区域分成两个部分,从而扩大了激子在发光层中的复合区域;第二电荷控制层ADN可以有效地将空穴限制在发光层中,避免了激子在电子传输层中形成的无辐射跃迁从而提高了器件的发光性能。  相似文献   

11.
袁桃利  王秀峰  朱小娟  张宏科  牟强 《光子学报》2014,38(10):2530-2533
采用具有空穴阻挡层的器件,结构为ITO/2T-NATA(60nm)/NPB(50nm)/NPB(30nm):DCJTB/NPB(40nm)/BCP(10nm)/Alq(80nm)/LiF(1nm)/Al(20nm),结果表明,DCJTB的掺入量的微小改变对器件的色度影响很大,当DCJTB的掺入量为1.22%时,器件的颜色偏黄绿,其色坐标为(0.3363,0.3871),峰值波长为561nm,起亮电压为10V。亮度为19000cd/m2。而当DCJTB的掺入量为0.94%时,器件的色度偏蓝,其色坐标为(0.2555,0.2741)峰值波长为449nm,亮度为15000cd/m2。当DCJTB的掺浓度为1.0时,器件接近白色。此时器件的起亮电压为7V,亮度也很好。  相似文献   

12.
We demonstrate a non-doped white organic light-emitting diode (WOLED) in which the blue-, green- and red-emissions are generated from 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl, tris(8-hydroxyquinoline)aluminum (Alq) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyl-julolidyl 9-enyl)-4H-pyran (DCJTB), which is used as an ultrathin layer. The DCJTB ultrathin layer plays the chromaticity tuning role in optimizing the white spectral band by modulating the location of the DCJTB ultrathin layer in the green emissive Alq layer. The optimized WOLED gives the Commission Internationale de l’Eclairage-1931 xy coordinates of (0.319, 0.335), a color rendering index of 91.2 at 10 V, a maximum brightness of 21010 cd/m2 at 12 V and a maximum current efficiency of 5.17 cd/A at 6.6 V. The electroluminescence mechanism of the white device is also discussed.  相似文献   

13.
Performances of red organic light-emitting device were improved by co-doping 2-formyl-5,6,11,12-tetraphenylnaphthacene (2FRb) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) in tris-(8-hydroxyquinoline) aluminum (Alq3) host as the emitting layer. The device with 1 wt% DCJTB and 2.4 w% 2FRb in Alq3 host gave a saturated red emission with CIE chromaticity coordinates of (0.65, 0.35) and a maximum current efficiency as high as 6.45 cd/A, which are 2 and 2.4 fold larger than that of the device with 1 wt% DCJTB (3.28 cd/A) in Alq3 host and the device with 2.4 wt% 2FRb (2.72 cd/A) in Alq3 host at the current density of 20 mA/cm2, respectively. The improvement could be attributed to the effective utilization of host energy by both energy transfer and trapping in the electroluminescence process and the depression of concentration quenching between the dopants molecules.  相似文献   

14.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

15.
A new compound with intramolecular charge transfer (ICT) property—5,6-Bis-[4-(naphthalene-1-yl-phenyl-amino)-phenyl]-pyrazine-2,3-dicarbonitrile(BNPPDC) was synthesized. The new compound was strongly fluorescent in non-polar and moderately polar solvents, as well as in thin solid film. The absorption and emission maxima shifted to longer wavelength with increasing solvent polarity. The fluorescence quantum yield also increased with increasing solvent polarity from non-polar to moderately polar solvents, then decreased with further increase of solvent polarity. This indicates both “positive” and “negative” solvatokinetic effects co-existed. Using this material as hole-transporting emitter and host emitter, we fabricated two electroluminescent (EL) devices with structures of A (ITO/BNPPDC (45 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm) and B (ITO/N,N′-diphenyl-N,N′-bis-(3-methylphenyl) (1,1′-diphenyl)4,4′-diamine (TPD) (50 nm)/BNPPDC (20 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm). The devices showed green-yellow EL emission with good efficiency and high brightness. For example, the device A exhibited a high brightness of 17400 cd/m2 at a driving voltage of 11 V and a very low turn-on voltage (2.9 V), as well as a maximum luminous efficiency 3.61 cd/A. The device B showed a similar performance with a high brightness of 12650 cd/m2 at a driving voltage of 13 V and a maximum luminous efficiency 3.62 cd/A. In addition, the EL devices using BNPPDC as a host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as a dopant (configuration: ITO/TPD (60 nm)/BNPPDC:DCJTB (2%) (30 nm)/TPBI (35 nm)/Mg:Ag (200 nm)) showed a good performance with a brightness of 150 cd/m2 at 4.5 V, a maximum brightness of 12600 cd/m2 at 11.5 V, and a maximum luminous efficiency of 3.30 cd/A.  相似文献   

16.
This study presents a new design that uses a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure to improve the electrical and optical performance of white organic light-emitting diodes (WOLEDs). The proposed structure is ITO/m-MTDATA (15 nm)/NPB (15 nm)/NPB: 25% BAlq (15 nm)/NPB: 50% BAlq (15 nm)/BAlq: 0.5% Rubrene (10 nm)/BAlq: 1% Rubrene (10 nm)/BAlq: 1.5% Rubrene (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al (200 nm). (m-MTDATA: 4,4′,4″ -tris(3-methylphenylphenylamino)triphenylamine; NPB: N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine; BAlq: aluminum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate; Rubrene: 5,6,11,12-tetraphenylnaphthacene; Alq3: tris-(8-hydroxyquinoline) aluminum). By using this structure, the best performance of the WOLED is obtained at a luminous efficiency at 11.8 cd/A and the turn-on voltage of 100 cd/m2 at 4.6 V. The DG structure can eliminate the discrete interface, and degrade surplus holes, the electron-hole pairs are efficiently injected and balanced recombination in the emissive layer, thus the spectra are unchanged under various drive currents and quenching effects can be significantly suppressed. Those advantages can enhance efficiency and are immune to drive current density variations.  相似文献   

17.
We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/Al. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.  相似文献   

18.
Photoluminescence (PL) and electroluminescence (EL) of SrS:Cu,F alternating current thin film electroluminescent (ACTFEL) device prepared by electron beam/thermal multi-source evaporation are presented. The active layer was grown at 380 °C and neither post-deposition annealing nor sulphur co-evaporation was performed. Two bands at 380 and 435 nm were present in the PL spectrum, which are suggested to be due to donor acceptor recombination. EL spectrum consisted of an additional band at 535 nm, which is attributed to Cu+ intracenter emission. The device exhibited yellowish white EL emission with chromaticity coordinates x=0.25, y=0.27 and low threshold voltage.  相似文献   

19.
The effects of different hole injection materials as the buffer layer on the electro-luminescence (EL) performances of white organic light-emitting diodes (WOLEDs) are investigated in detail. It is found that the EL performances and electric properties were strongly dependent on the structure of the used hole injection materials with different thicknesses, which directly affected the injection and transport properties in devices, and thus the EL efficiency and lifetime. It can be seen that a hybrid buffer layer of 5 nm aluminum fluoride (AlF3)/15 nm 4,4′,4″-tris(3-methylphenylphenylamino) (m-MTDATA) as the hole injection buffer layer shows the best EL performances in efficiency and lifetime, showing a promising hole injection material in WOLEDs. The mechanisms behind the enhanced performance of the hybrid buffer layer in WOLEDs are discussed based on X-ray photoelectron spectroscopy (XPS) measurement.  相似文献   

20.
Stable white electroluminescence (EL) has been achieved from organic LED, in which an ultrathin 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM) dye layer has been inserted in between two 2-methyl-8-hydroxyquinolinolatolithium [LiMeq] emitter layer and by optimizing the position of the DCM dye layer from the α-NPD/LiMeq interface. Electroluminescence spectra, current-voltage-luminescence (I-V-L) characteristics of the devices have been studied by changing the position of the dye layer. As the distance of DCM layer from α-NPD/LiMeq interface is increased, the intensity of host emission enhances rapidly. Introduction of thin layer of DCM in emissive layer increases the turn on voltage. The best Commission International de L’ Eclairage (CIE) coordinates i.e. (0.32, 0.33) were obtained with device structure ITO/α-NPD(30 nm) /LiMeq(10 nm)/DCM(1 nm)/LiMeq(25 nm)/BCP(6 nm)/Alq3(28 nm)/LiF(1 nm)/Al(100 nm). The EL spectrum covers the whole visible spectra range 400-700 nm. The color rendering index (CRI) for our best white light (Device 4) is 47.4. The device shows very good color stability in terms of CIE coordinates with voltages. The maximum luminescence 1240 cd/m−2 has been achieved at 19 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号