首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fast and efficient timing offset correction is an essential function in the coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. The timing synchronization schemes for OFDM systems in wireless communications can be used for CO-OFDM systems. However, the performance of these schemes is reduced due to the chromatic dispersion. To fulfill the requirement of the CO-OFDM systems, a novel symbol timing synchronization scheme based on chirp signals has been proposed. The simulation results show that the proposed method is robust in CO-OFDM systems which is suffering from noise.  相似文献   

2.
Broadband wireless systems generally use orthogonal frequency division multiplexing (OFDM) with link adaptation (LA) to achieve high throughput while meeting bit error rate (BER) constraint. OFDM systems are known to be affected by non-linearity of high power amplifier (HPA) at transmitter, carrier frequency offset (CFO), symbol timing offset (STO) and channel estimation error at the receiver. The delay in feedback of channel state information (CSI) further affects the performance of LA procedures. The focus of this work is on performance analysis in presence of simultaneous affect of all these impairments on LA based OFDM systems. The results are found to be useful for threshold readjustment which is essential for successful implementation of LA scheme to counter the effects of change in operating conditions from ideal to as listed above.  相似文献   

3.
Three clock synchronization schemes for a quantum key distribution system are compared experimentally through the outdoor fibre and the interaction physical model of the the clock signal and the the quantum signal in the quantum key distribution system is analysed to propose a new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology to reduce quantum bits error rates under some transmission rate conditions.The proposed synchronization scheme can not only completely eliminate noise photons from the bright background light of the the clock signal,but also suppress the fibre nonlinear crosstalk.  相似文献   

4.
A new blind frequency offset estimation method based on cyclic prefix and virtual subcarriers in coherent optical orthogonal frequency division multiplexing (CO-OFDM) system is presented. It is able to estimate the fractional part and integral part of frequency offset at the same time. Its estimation range is about [-3.5 GHz, 3.5 GHz]. The influence of the integral frequency offset is comprehensively analyzed in COOFDM system. Its performances in the additive white Gaussian noise (AWGN) channel and the dispersive channel are investigated, respectively. Simulation results indicate that even in the dispersive channel, when the optical signal-to-noise ratio (OSNR) is low, it can still work very well.  相似文献   

5.
An adaptive algorithm of fine synchronization for intermediate frequency architecture coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission system is proposed. The whole synchronization procedure is separated into two steps. In the first step, we use an auto-correlation-style algorithm to achieve the coarse symbol synchronization. In the second step, the proposed algorithm is used to achieve the adaptive fine synchronization. The merit of the proposed algorithm is that it can realize fine synchronization under different environments without adjusting the detect-threshold of timing metric in a dynamically reconfiguration network. And also the algorithm can implement in field-programmable gate array (FPGA) or other digital signal processing (DSP) chips easily. In this paper, the CO-OFDM model is analyzed in theory firstly. Secondly, an analysis on the performance of coarse synchronization algorithm used in this paper is made. Finally, the proposed fine synchronization algorithm is introduced in detail. The simulation experiment result demonstrates that the proposed algorithm achieves fine synchronization under different signal noise ratio (SNR) conditions after 6 fiber-spans transmission.  相似文献   

6.
Distributed multiple-input multiple-output (DMIMO) technology is a key enabler of coverage extension and enhancement of link reliability in wireless networks through distributed spatial diversity. DMIMO employs classic relay channels in between the source and the destination to opportunistically form a virtual antenna array (VAA) for emulating cooperative diversity. Use of multiple antennas at the relays further increases capacity and reliability of the relay–destination channel through multiplexing and diversity of MIMO antennas respectively. In such network, the signal received at the destination is characterized by multiple timing offsets (MTO) due to different propagation delay and multiple carrier frequency offsets (MCFO) due to independent oscillators of the relays. Hence, synchronization becomes a crucial issue in DMIMO in order to realize the distributed coherence. In this paper, we address joint estimation of MCFO and MTO in DMIMO orthogonal frequency division multiplexing (OFDM) with MIMO configuration at the relays for estimate-and-forward (EF) relaying protocol. Two iterative algorithms, based on expectation conditional maximization (ECM) and space alternating generalized expectation–maximization (SAGE) are proposed for joint estimation in presence of inter carrier interference (ICI). The robustness of both the estimators to ICI is evaluated by mathematical analysis and supported by extensive simulations. The performance of the proposed estimators is assessed in terms of mean square error (MSE) and bit error rate (BER). The theoretical Cramer–Rao lower bound (CRLB) of estimator error variance is also derived.  相似文献   

7.
Abstract

A fast bits allocation algorithm is proposed for adaptively modulated optical orthogonal frequency division multiplexing multimode fiber communication system to decrease the system bit error rate caused by some orthogonal frequency division multiplexing subcarriers being located at the deep nulls in the high-frequency region of multimode fiber. Based on a lookup table scheme, the new algorithm dramatically decreases the computational complexity of the Greedy algorithm. The simulation results show that the new algorithm has the same allocation result as the Greedy algorithm, but the computational complexity is considerably lower. In addition, adaptive bits allocation can effectively reduce the system bit error rate.  相似文献   

8.
An integrated-optic amplitude and phase modulator is used in a network of interferometric sensors to create both a phase carrier and the pulses for multiplexing using time division. A time sampling technique is successfully used to account for the optical crosstalk in TDM processing and a very high frequency phase carrier is demonstrated.  相似文献   

9.
A companding method for peak-to-average power ratio (PAPR) reduction in optical orthogonal frequency division multiplexing systems has been proposed and simulated. The proposed scheme is based on the modified hyperbolic tangent transform, which can enlarge the small signals and compress the large signals while keeping the average power invariant. Simulation results verify that the proposed companding scheme can markedly decrease the PAPR, and a good bit error rate performance is obtained.  相似文献   

10.
孙宗鑫  于洋  周锋  刘凇佐  乔钢 《物理学报》2014,63(10):104301-104301
针对线性调频信号同步相关的旁瓣、m序列扩频同步的序列自噪声和二进制相移键控调制信号在主瓣周围一个码片范围内存在较强烈的旁瓣三个问题,提出了一种基于二进制偏移载波(BOC)调制信号的无干扰窗水声同步方式.利用互补序列的非周期自相关函数之和为零的特殊性质,实现了在主瓣周围一个码片范围外,零相关窗范围内的无干扰窗.使用BOC(1,1)方式对信号进行亚载波调制,以减少主瓣周围一个码片范围内的旁瓣.对单通道信号和双通道信号的零相关窗形式都进行了设计,通过仿真和实验验证了BOC零相关窗方法在水声系统的同步、信道测量和估计中的有效性.  相似文献   

11.
Cyclic prefix (CP) deploying techniques such as orthogonal frequency division multiplexing (OFDM) and single carrier frequency domain equalization (SC-FDE) offer considerable advantages in terms of equalizing time dispersive effect of wireless channel at the expense of a reasonable spectral redundancy. However, CP introduces cyclic features to the signal which can also be exploited for signal interception, blind parameter estimation and synchronization, and therefore, compromises the security of the signal against eavesdropping attacks. In order to provide a covert communication against such attacks, in this paper, we present two novel techniques that suppress the cyclic features of the CP utilizing signals while maintaining their advantages in equalization without reducing spectral efficiency. The first technique is built on a CP selection strategy while the second one is based on randomizing the symbol time. We also performed peak-to-average power ratio mitigation and out-of-band leakage suppression along with the cyclic feature concealing in the second technique at the expense of a reasonable complexity and signaling. Subsequent to the presentation of the proposed techniques, their performances are discussed and compared for OFDM and SC-FDE in terms of complexity and bit-error-rate along with cyclic feature suppression.1  相似文献   

12.
While pilot symbols facilitate channel estimation, they reduce the transmit energy for data symbols per OFDM symbol under a fixed total transmit power constraint. In this paper, we investigate the effect of the pilot-to-data power ratio (PDPR) on multilevel quadrature amplitude modulation (M-QAM) multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with adaptive modulation in order to provide a basic framework for finding the optimal PDPR in current and emerging standards using MIMO-OFDM. In particular, we derive the optimal PDPR in terms of average symbol error rate (SER) and spectral efficiency according to different receiver types such as zero-forcing (ZF) and minimum mean square error (MMSE). Employing the optimal PDPR results in higher spectral efficiency and lower SER without using any additional resource.  相似文献   

13.
This paper presents an algorithm to minimize the performance loss (PL) of minimum mean square error (MMSE) in code division multiple access (CDMA) based optical multiple input multiple output orthogonal frequency division multiplexing (O-MIMO-OFDM) systems over 1200 km of standard single mode fiber (SSMF). The performance of the system using proposed algorithm scheme is compared to MMSE scheme by simulation results. It shows the superior performance of proposed algorithm.  相似文献   

14.
To extensively deploy quantum key distribution(QKD) systems, copropagating with classical channels on the same fiber using wavelength division multiplexing(WDM) technology becomes a critical issue. We propose a user-based channel-interleaving WDM scheme with unequal frequency spacing(UFS-i WDM) to reduce the impairment on the quantum channels induced by four-wave mixing(FWM), and theoretically analyze its impact on quantum bit error rate(QBER). Numerical simulation results show that a UFS-i WDM can significantly reduce the FWM noise and improve QBER compared with the corresponding WDM scheme with equal frequency spacing(EFS), especially in the case of nonzero dispersion shifted fiber.  相似文献   

15.
Abstract

The performance assessment of orthogonal frequency division multiplexing signals in direct-detection transmission systems by using the error vector magnitude and several bit error ratio approaches is analyzed and compared through numerical simulation. It is shown that excellent accuracy of the bit error ratio estimates is obtained by a semi-analytical Gaussian approach for all the orthogonal frequency division multiplexing system configurations analyzed and that the error vector magnitude only provides reliable estimates of the system performance when the system is dominantly impaired by noise. Additionally, a novel Q-factor approach for orthogonal frequency division multiplexing optical signals showing improved bit error ratio estimates is also presented.  相似文献   

16.
The all-optical orthogonal frequency division multiplexing has a better spectral efficiency and a lower response requirement of modulators for high capacity transmission. In the system, the optical filter will degrade the performance of subcarriers which are far away from the center carrier. We proposed an improvement method of all-optical OFDM scheme using Nyquist pulse shape in the pulse source generator. Comparing a Nyquist shape pulse with a Gauss pulse in a 4 × 100 Gb/s DP-QPSK all-optical sampling OFDM system, the side lobe of transmitted spectrum can be effective suppressed, and the optical power will be more focused on the effective frequency band. By coherent receiver, the results show that the Nyquist pulse shaping can improve the OSNR and transmission performance of subcarriers which deviate mostly from the center frequency of optical filter. This improvement is of great benefit for multi-users system.  相似文献   

17.
新型四倍频光生毫米波矢量信号调制技术   总被引:1,自引:0,他引:1  
王勇  李明安  赵强  文爱军  王方艳  尚磊 《光学学报》2012,32(9):906001-33
提出一种基于双并联马赫-曾德尔调制器(MZM)的新型四倍频光生毫米波技术,并用于矢量信号调制。传统的四倍频调制技术,由于数据信号同时调制到+2,-2阶边带上,拍频检测后两个边带上数据信号会产生相位叠加,只适用于不归零码(NRZ)等强度调制格式。提出的矢量信号调制技术将数据信号调制在一个-1阶边带上,另一个+3阶边带不携带数据,在拍频检测后幅度和相位信息被正确保留。同时,四倍频模块降低了传输过程中对电和光器件的带宽需求。理论分析和仿真结果表明,通过此方法产生的携带在60GHz载波上的6.25×108 symbol/s的四相相移键控(QPSK)信号,经过20km单模光纤传输后,误差向量幅度(EVM)损耗可以忽略。  相似文献   

18.
Abstract

Recently, there is an increasing interest in using orthogonal frequency division multiplexing schemes in advanced optical communication systems to compensate fiber dispersion. This article presents a comprehensive theoretical analysis to treat the optical orthogonal frequency division multiplexing scheme as a special case of optical subcarrier multiplexing system. An analytical expression is derived to calculate the laser power required to achieve a specific level of signal-to-noise ratio, as a function of various system and noise parameters. Simulations show that the presence of laser relative intensity noise may cause a signal-to-noise ratio floor, where the bit error rate cannot be improved further even when the laser power increases dramatically.  相似文献   

19.
采用密集波分复用技术的光纤水听器阵列研究   总被引:5,自引:4,他引:1  
利用密集波分复用和时分多路复用技术相结合的大规模阵列结构,以Mach-Zehnder干涉型光纤水听器为例,分析了采用相位产生载波技术的频分多路复用,提出了密集波分复用技术在干涉型光纤水听器阵列应用的新方法,给出了复用体系结构,并分析了其在工程上可行性.  相似文献   

20.
In this paper, a spectral efficient hybrid wireless optical broadband access network (WOBAN) is proposed and demonstrated based on the transmission of wireless multi-input multi-output orthogonal frequency division multiplexing (MIMO OFDM) signals over wavelength division multiplexing passive optical network (WDM PON). By using radio over fiber (ROF) techniques, the optical fiber is well adapted to propagate multiple wireless services having different carrier frequencies. It is a known fact that multiple wireless signals having the same carrier frequency cannot propagate over a single optical fiber at the same time, such as MIMO signals feeding multiple antennas in fiber wireless (FiWi) system. A novel optical single-sideband frequency translation technique is designed and simulated to solve this problem. This technique allows four pairs of wireless MIMO OFDM signals with the same carrier frequency for each pair to be transmitted over a single optical fiber by using one optical source per wavelength. The crosstalk between the different MIMO channels with the same frequency is eliminated, since each channel is upconverted on specified wavelength with enough channel spacing between them. Also the maximum crosstalk level between the different MIMO channels with different frequencies is very low around ?76 dB. The physical layer performance of the proposed WOBAN is analyzed in terms of the bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR). The proposed WOBAN achieves 7.68 Gb/s data rate for 20 km for the optical back-end and 240 Mb/s for the outdoor wireless front-end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号