首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ho3+ doped Ba0.65Sr0.35TiO3 (BST) nanocrystals was prepared by sol-gel method. The structural and morphological properties of the nanocrystals were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The absorption spectrum, photoluminescence spectrum and fluorescence time decay curve were measured at room temperature. Based on the Judd-Ofelt (J-O) theory, the J-O intensity parameters Ωt (t=2, 4, 6) of Ho3+ doped BST nanocrystals were calculated to be 0.67×10−20 cm2, 1.11×10−20 cm2 and 1.09×10−20 cm2, respectively. The emission probabilities, radiative lifetimes and branching ratios of the different Ho3+ transitions were also determined. The emission cross sections of the important intermanifold transitions 5F4,5S25I8, 5F55I8 and 5F45I7 have been calculated from the luminescence spectrum. The room temperature fluorescence lifetime of the 5S25I8 transition for Ho3+ in BST nanocrystals was measured and the radiative quantum efficiency was estimated to be 61.9%.  相似文献   

2.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

3.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

4.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

5.
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+:Y2SiO5 crystal with 120 fs, 800 nm infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d → 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence.  相似文献   

6.
用高温熔融法制备了Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃(TeO2-ZnO-La2O3)样品,测试了玻璃样品的吸收光谱和上转换发光光谱,分析了上转换发光机理.结果发现:在975 nm波长激光二极管(LD)激励下,制备的碲酸盐玻璃样品可以观察到强烈的红光(662 nm)、绿光(546 nm)和蓝光(480 nm)三基色上转换发光,红光对应于Tm3+离子 关键词: 碲酸盐玻璃 上转换发光 白光 3+/Ho3+/Yb3+共掺')" href="#">Tm3+/Ho3+/Yb3+共掺  相似文献   

7.
Uniform Yb3+ and Er3+-codoped Y2O3 hollow microspheres were synthesized via urea co-precipitation using carbon spheres as templates. Intense red emission (4F9/24I15/2) and weak green emission (2H11/2, 4S3/24I15/2) of Er3+ were observed for the Yb3+ and Er3+-codoped Y2O3 hollow microspheres under 980 nm infrared excitation. The integrated intensity of visible emission and the ratio of red to green were found to be strongly dependent on the amount of carbon sphere templates and the concentration of Yb3+ ions. The amount of carbon sphere templates also plays an important role in adjusting the size of crystallite. Multi-phonon relaxation resulted from the absorbents (OH and CO32−) on the surface of the crystallite, and efficient occur of energy transfer processes and cross-relaxation between Er3+ and Yb3+ are responsible for the enhancement of intensity ratio of red to green emission. Interestingly, for higher concentration of Yb3+ ions, the green emission is assigned to a three-phonon process in Y2O3:Yb/Er hollow microspheres, which also could result in the increase of the red to green emission ratio. An explanation to account for these behaviors was presented.  相似文献   

8.
通过固相反应法制备了Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的样品,并对样品在980nm激光激发下的上转换发光特性进行了研究.从发射光谱可以发现,在可见光范围内有3个强的发光带,一个位于654nm附近的红光带和两个分别位于545nm、525nm附近的绿光带,分别对应于Er3+离子的以下辐射跃迁:4F9/24I15/24S3/24I15/22H11/24I15/2.其中又以Er3+离子的4F9/24I15/2跃迁产生的红色荧光辐射最强.对其上转换发光机制进行了分析,发现这三个发光过程都是双光子过程.对样品粉末进行了XRD检测,发现ZrO2主要以立方相为主,并且计算得到了这种立方结构的晶格常数.Al2O3固溶于ZrO2中,Al3+嵌入ZrO2后产生氧空位,导致ZrO2晶体的对称性降低,这种结构变化更有利于提高上转换效率,即上转换发光强度增强. 关键词: 3+/Yb3+')" href="#">Er3+/Yb3+ 上转换 2-Al2O3')" href="#">ZrO2-Al2O3 荧光 稀土  相似文献   

9.
The Ho3+/Yb3+ and Tm3+/Yb3+ doped P2O5-MgO2-Sb2O3-MnO2-AgO glasses were prepared by high temperature melting method. Under a 975 nm laser diode (LD) excitation, the single red and single blue upconversion (UC) emissions were observed in Ho3+/Yb3+ and Tm3+/Yb3+ doped samples, respectively. By studying the spontaneous radiative and multiphonon relaxation probabilities, we find that the multiphonon relaxation probability of 5I6 (Ho3+) state is very large (1.39 × 106 s− 1), which is helpful to the population of 5I7 state. The multiphonon relaxation probability of 3H5 and 3F2,3 (Tm3+) is also very large, which results in lots of population in 3F4 and 3H4 states. The results are that the red UC emission of Ho3+ and the blue UC emission of Tm3+ are stronger.  相似文献   

10.
A serials of Ho3+/Yb3+ co-doped tellurite glasses by pumping 970 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Two intense emission bands were observed in Ho3+/Yb3+ co-doped tellurite glasses centered at 549 and 664 nm corresponding to Ho3+: 5S2(5F4)→5I8 and 5F55I8 transitions, respectively. The upconversion intensities of red and green emissions in Ho3+/Yb3+ co-doped glasses were enhanced largely when increasing Yb2O3 content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. The energy transfer coefficients were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD3 and CD4 were CD2=5.0×10−18 cm3/s, CD3=1.5×10−17 cm3/s, CD4=9.0×10−17 cm3/s.  相似文献   

11.
Ho3+/Tm3+/Yb3+ tri-doped glass ceramics with white light emitting have been developed and demonstrated. Pumped by 980 nm laser diode (LD), intensive red, green and blue up-conversions (UC) were obtained. The green emission is assigned to Ho3+ ion and the blue emission is assigned to Tm3+ ion, whereas the red emission is the combination contribution of the Ho3+ and Tm3+ ions. The RGB intensities could be adjusted by tuning the rare-earth ion concentration and pump power intensity. Thus, multicolor of the luminescence, including perfect white light with CIE-X=0.329 and CIE-Y=0.342 in the 1931 CIE chromaticity diagram can be obtained in 0.15 Ho3+/0.2Tm3+/3Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals pumped by a single infrared laser diode source of 980 nm at 500 mW. The up-conversion luminescence mechanism of Yb3+ sensitize Ho3+ and Tm3+ ions and the energy transfer from Ho3+ to Tm3+ in oxy-fluoride silicate glass ceramics were analyzed.  相似文献   

12.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

13.
Upconversion (UC) spectra of Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics were obtained under the excitation of a 976 nm diode laser. Systematic experimental studies, including power dependence, luminescence lifetime, and the intensity ratio σ for the green to NIR emissions, were carried out in order to confirm the UC mechanism of Ho3+ ions. Our results demonstrated that the NIR emission was associated with the 5F4/5S25I7 transition of Ho3+ ions without the contribution of the 5I45I8 transition for Ho3+/Yb3+ codoped Y2O3 and Gd2O3 bulk ceramics. Additionally, population saturation in the 5I7 energy level had been observed in Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics. All experimental observations can be well explained by the steady-state rate equations.  相似文献   

14.
Optical absorption and luminescence spectra of ytterbium and terbium codoped BaB2O4 (β-BBO and α-BBO) crystals grown in different conditions have been studied. Low-temperature absorption peaks were observed in all samples. Features related to rare earth ions were observed in absorption and luminescence spectra. Absorption and emission in the range 860-1000 nm are caused by 2F5/22F7/2 transitions in Yb3+ ions. Emission peaks at 500, 550, 590 and 630 nm correspond to 5D47F6, 7F5, 7F4, and 7F3 transitions of Tb3+ ions, respectively. The probable reasons of variations in spectroscopic features related to Yb in BBO host are discussed. It has been shown that the replacement of Ва2+ by Yb3+ in the lattice of ВаВ2О4 results in the decrease in the symmetry of oxygen surrounding of Yb3+.  相似文献   

15.
Nanocrystalline powders with various Eu3+ concentration (from 1 to 10 mol %) doped La2O3 were prepared via a combustion route. Their structure and morphology were characterized using X-ray diffraction (XRD) and High-resolution transmission electron microscopy. The emission spectra of the as-synthesized samples show that the strongest emission position is centered at 626 nm corresponding to 5D07F2 transition of Eu3+ ions and the intensity change of 626 nm emission is considered as a function of ultraviolet (240 nm) irradiation time. The excitation spectra at 626 nm monitoring indicate that the charge transfer state band is varies with different Eu3+ ion concentration. These results are attributed to the surface defects of the nanocrystals.  相似文献   

16.
李堂刚  刘素文  王恩华  宋灵君 《物理学报》2011,60(7):73201-073201
通过燃烧法制备了Yb3+-Tm3+共掺的Y2O3纳米粉体,并对样品在980 nm激光照射下的上转换发光特性进行了研究.实验发现,样品在可见光区域能够产生强烈的蓝色发光(476 nm和487 nm)和较弱的红色发光(约650 nm),而且同时观察到了两个紫外发光峰1I63H6 (~297 nm)和1关键词: 2O3:Yb3+')" href="#">Y2O3:Yb3+ 3+')" href="#">Tm3+ 上转换光谱 敏化 紫外发光  相似文献   

17.
Ce3+ and Dy3+ activated Li2CaGeO4 phosphors were prepared by a solid-state reaction method, and characterized by XRD (X-ray diffraction) and photoluminescence techniques. The characteristic emission bands of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions were detected in the emission spectra of Li2CaGeO4:Dy3+. Ce3+ broad band emission was observed in Li2CaGeO4:Ce3+ phosphors at 372 and 400 nm due to 5d→4f transition when excited at 353 nm. Co-doping of Ce3+ enhanced the luminescence of Dy3+ significantly and concentration quenching occurs when Dy3+ is beyond 0.04 mol%. White-light with different hues can be realized by tuning Dy3+ concentration in the phosphors.  相似文献   

18.
Bright green (at 525 and 550 nm) and red (at 660 nm) luminescence in Er:Yb:La3Ga5.5Ta0.5O14 (LGT) powder synthesized by solid state reaction was obtained by pumping at 936 nm. Yb3+-Er3+ energy transfer processes accounting for population of the 2H211/2, 4S3/2 and 4F9/2 Er3+ levels are discussed. The dependence of ratio between the intensities of the green and red luminescence on pump intensity is analyzed. The rather high quantum efficiency (58%) of the (4S3/2, 2H211/2) Er3+ emitting level recommends LGT doped with erbium and ytterbium for upconversion applications.  相似文献   

19.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

20.
Micro-sized NaY(MoO4)2:Tb3+ phosphors with dendritic morphology was synthesized by a ionic liquid-assisted hydrothermal process. X-ray diffraction (XRD) indicated that the as-prepared product is pure tetragonal phase of NaY(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images showed that the as-prepared NaY(MoO4)2:Tb3+ phosphors have dendritic morphology. The photoluminescent (PL) spectra displayed that the as-prepared NaY(MoO4)2:Tb3+ phosphors show a stronger green emission with main emission wavelength 545 nm corresponding to the 5D47F5 transition of Tb3+ ion, and the optimal Tb3+ doping concentration for obtaining maximum emission intensity was confirmed to be 10 mol%. Based on Van Uitert's and Dexter's models the electric dipole–dipole (D–D) interaction was confirmed to be responsible for the concentration quenching of 5D4 fluorescence of Tb3+ in the NaY(MoO4)2:Tb3+ phosphors. The intrinsic radiative transition lifetime of 5D4 level is found to be 0.703 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号