首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

2.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

3.
This paper reports 2.0 μm emission properties of Tm3+/Ho3+ co-doped oxyfluoride tellurite glass exited by 808 nm laser diode (LD). Mid-infrared transmittance property of glass was investigated by Fourier transform infrared (FTIR) spectrometer. The real chemical composition of investigated glass was identified by X-ray photoelectric spectroscopy (XPS). Thermal stability of the glass was determined by differential thermal analysis (DTA) measurement. The Judd-Ofelt parameters, spontaneous radiative transition probabilities, branching ratios and radiative lifetime of Ho3+ were calculated based on the absorption spectra by using Judd-Ofelt theory. Results indicate that the maximum 2.0 μm emission intensity attributed to the 5I75I8 transition of Ho3+ was achieved at 1.5 mol% Tm2O3 and 1 mol% Ho2O3 concentrations in oxyfluoride tellurite glass. OH absorption at 3000 cm−1 was greatly depressed by introduction of 10 mol% F. The maximum absorption and stimulated emission cross-section of Ho3+ near 2.0 μm are 7.0×10−21 cm2 at 1950 nm and 8.8×10−21 cm2 at 2048 nm, respectively. The calculated radiative lifetime of 4.4 ms for 5I75I8 transition and large stimulated emission cross-section of the Tm3+/Ho3+ co-doped oxyfluoride tellurite glass indicate that the glass has a potential application in efficient 2.0 μm laser.  相似文献   

4.
Pankaj Dutta  S. Rai 《Optik》2011,122(10):858-863
Infrared-to-visible upconversion processes and Judd Ofelt intensity parameters were analyzed for Ho3+ singly doped and Ho3+/Yb3+ co-doped Al(NO3)3-SiO2 glasses with a fixed Ho3+ and Yb3+ concentrations prepared by sol-gel method. Blue and intense green upconversion emissions centered at 467 and 538 nm, corresponding to the and transitions, respectively, were observed under 800 nm excitation. The analysis of the dynamics of upconversion emissions suggest excited state absorption, energy transfer and back transfer as the possible causes for the observed transitions. Significant enhancement of upconversion intensities in Ho3+/Yb3+ co-doped glass compared to the Ho3+ singly doped one confirms efficient energy transfer between Yb3+ and Ho3+ ions. Intense upconversion emissions shown by the glasses in the present study indicate their potential in upconversion device applications.  相似文献   

5.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped natrium-germanium-bismuth glasses have been studied. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. At room temperature, an upconversion efficiency of 6.1×10−2 has been obtained for the green emission from the glass with 0.5 wt% Er2O3 and 3.0 wt% Yb2O3 pumped by 980 nm radiation with an intensity of 270 W/cm2. And the “standardized” efficiency for green upconversion light is higher than that reported in lead-germanate, lead-tellurite-germanate, and silicate glasses. The results indicate that the Er3+/Yb3+-codoped natrium-germanium-bismuth oxide glass may be a potential material for developing upconversion optic devices.  相似文献   

6.
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649 nm corresponding to the transitions 1G43H6 and 1G43H4 of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3%=3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+.  相似文献   

7.
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process.  相似文献   

8.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

9.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

10.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

11.
Unusual bright red-dominant upconversion light was observed in Ho3+/Yb3+ co-doped YF3-BaF2-Ba(PO3)2 glasses excited by the 980-nm laser diode at room temperature. The integral intensity ratios of the red upconversion emission to the green one reached about 10:1 in optimized 0.125Ho3+-15Yb3+ co-doped sample. In order to find out its behind-the-scene mechanism, the optical properties and the phonon-assisted relaxations on the excited levels of Ho3+ in our samples were investigated. Additionally, the effects of the concentrations of the doping ions, excitation pump power, and temperature on the upconversion emissions were also systematically studied. These results revealed that the proper phonon frequency of fluorophosphate glasses, the efficient phonon-assisted relaxations from 5I6 to 5I7 levels (4,960 s?1), and the long lifetime of the 5I7 (about 2.8 ms) levels should be responsible for bright red upconversion emission at a much greater concentration ratio of C Yb 3+ /C Ho 3+ .  相似文献   

12.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

13.
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Ω6 and Sed/(Sed+Smd) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Ω6 as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of 4F9/2 and 4S3/2 states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed.  相似文献   

14.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride glass when excited by a 975 nm diode laser was studied in this paper. One typical ultraviolet upconversion luminescence lines positioned at 362.3 nm was found. It can be attributed to the five-photon upconversion luminescence transition of 1D2 → 3H6. Several visible upconversion luminescence lines at 451.1 nm, (477.9 nm, 462.5 nm), 648.7 nm, (680.5 nm, 699.5 nm) and (777.5 nm, 800.7 nm) were found also, which results from the fluorescence transitions of five-photon 1D2 → 3F4, three-photon 1G4 → 3H6, three-photon 1G4 → 3F4, two-photon 3F3 → 3H6 and two-photon 3H4 → 3H6 of Tm3+ ion, respectively. The theoretical analysis suggests that the upconversion mechanism of the 362.3 nm 1D2 → 3H6 upconversion luminescence is the cross energy transfer of {3H4(Tm3+) → 3F4(Tm3+), 1G4(Tm3+) → 1D2(Tm3+)} and {1G4(Tm3+) → 3F4(Tm3+), 3H4(Tm3+) → 1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results from the sequential energy transfer {2F5/2(Yb3+) → 2F7/2(Yb3+), 3H4(Tm3+) → 1G4(Tm3+)} and {2F5/2(Yb3+) → 2F7/2(Yb3+), 3F4(Tm3+) → 3F2(Tm3+)} from Yb3+ ions to Tm3+ions, respectively.  相似文献   

15.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

16.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

17.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

18.
Double tungstate KGd1−x(WO4)2:Ho3+/Yb3+ phosphors with doping concentrations of Ho3+ and Yb3+ (x=Ho3++Yb3+, Ho3+=0.05, 0.1, 0.2 and Yb3+=0.2, 0.45) were successfully synthesized by the microwave sol–gel method, and the upconversion mechanisms were investigated in detail. The synthesized particles formed after heat-treatment at 900 °C for 16 h showed a well crystallized morphology with particle sizes of 2–5 μm. Under excitation at 980 nm, the UC intensities of KGd0.7(WO4)2:Ho0.1Yb0.2 and KGd0.5(WO4)2Ho0.05Yb0.45 particles exhibited yellow emissions based on a strong 550-nm emission band in the green region and a strong 655-nm emission band in the red region, which were assigned to the 5S2/5F45I8 and 5F55I8 transitions, respectively. The Raman spectra of the doped particles indicated the presence of strong peaks at higher frequencies of 764, 812, 904, 984, 1050, 1106, 1250 and 1340 cm−1 induced by the disorder of the [WO4]2− groups with the incorporation of the Ho3+ and Yb3+ elements into the crystal lattice or by a new phase formation.  相似文献   

19.
Upconversion emission and energy transfer processes in singly, doubly and triply doped tellurite glasses have been studied under 798 and 980 nm laser excitations. Emissions have been observed at 482, 544, 584, 655 nm and at 477, 655, 698, 800 nm corresponding to Tb3+: 5D4 → 7F6, 7F5, 7F4, 7FJ (J = 0, 1, 2, 3) and Tm3+: 1G4 → 3H6, 1G4 → 3F4, 3F3 → 3H6, 3H4 → 3H6 transitions, respectively. Among Tm3+, Yb3+and Tb3+ ions only Tm3+ has a ground state absorption at 798 nm excitation due to 3H4 ← 3H6 transition. For 980 nm excitation only Yb3+ can absorb the incident radiation. However, for both types of excitations, emission from all the three ions Tb, Yb and Tm has been observed. Possible mechanisms are proposed as follows: under 798 nm excitation Tm3+ ions are excited which excite Yb3+ ions through energy transfer. Finally “cooperative energy transfer” from a pair of Yb3+ ions to Tm3+ and Tb3+ ions takes place. Under 980 nm excitation Yb3+ ions absorb the incident energy and excite Tm3+ and Tb3+ ions via cooperative energy transfer. Variation of emission intensity with the ion concentrations of Yb3+, Tm3+ and Tb3+ has been studied. The lifetime of the 1G4 level has also been measured.  相似文献   

20.
Optical absorption and luminescence spectra of europium doped strontium borate glasses prepared in different conditions are studied. It is found that the percentage of Eu3+ ions varies from 100 to 30% being controlled by the conditions of preparation. The mechanism, favoring reduction of europium to Eu2+ state in polycrystalline strontium tetraborate, is much weaker in glasses of the same composition. In samples containing mixed valence europium at densities of 8×1020 cm−3, the efficient transfer of optical excitation from Eu3+ to Eu2+, suppressing the Eu3+ luminescence, has been found. The most reliable way of monitoring the percentage of europium ions in different valences for strontium borate glasses is the measuring of absorption at f-f transition 7F05D2 of Eu3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号