首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

2.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

3.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

4.
Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500–25000 cm−1 and temperature range 9–300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed.  相似文献   

5.
The synthesis procedure of the Li3Fe2(PO4)3?+?Fe2O3 composite is presented. The monoclinic (A type) and hematite phases were detected by X-ray diffraction after the synthesis of the composite. The structural α–β (at a temperature of 460 K) and β–γ (at a temperature of 523 K) phase transitions in the composite were indicated by the anomalies of the electrical conductivity, dielectric permittivity, and changes of activation energies of conductivity. Two phase transitions have been detected in the Li3Fe2(PO4)3?+?Fe2O3 composite by 57Fe Mössbauer spectroscopy: the phase transition in Li3Fe2(PO4)3 from the paramagnetic to antiferromagnetic phase at temperature T N?=?29.5 K and the Morin phase transition in Fe2O3 at temperature T M?=?235 K.  相似文献   

6.
In the present work, (1−x)(0.935Bi0.5Na0.5TiO3–0.065BaTiO3)–xKNbO3 (BNT–BT–KN, BNT–BT–100xKN) ceramics with x ranging from 0 to 0.1 were prepared by the conventional ceramic fabrication process. A large electrostrictive coefficient of ∼10−2 m4 C−2 is obtained with the composition x ranging from 0.02 to 0.1, which is close to the well-known electrostrictive material Pb(Mg1/3Nb2/3)O3. Under an electric field of 4 kV/mm, the electrostrictive strain can reach as high as 0.08%. Besides, the electric field induced strain behavior indicates a temperature independent behavior within the temperature range of 20 to 150°C. The large electrostrictive strain is suggested to be ascribed to the formation of non-polar (NP) phase developed by the KNbO3 substitution, and the high electrostrictive coefficient of BNT–BT–KN ceramics makes them great candidates to be applied in the new solid-state actuators.  相似文献   

7.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

8.
The formation of an intermediate phase in SrFe12O19/La0.9Ca0.1MnO3 composites was demonstrated for the first time using only Mössbauer spectroscopy. The SrFe12O19/La0.9Ca0.1MnO3 composite was prepared by the two-stage (sol–gel and hydrothermal) synthesis with varying initial conditions. The X-ray diffraction studies showed that the composite consisted of two phases: well-formed structures of manganite La0.9Ca0.1MnO3 and hexagonal ferrite SrFe12O19. It was found that nanocrystalline La0.9Ca0.1MnO3 particles with size d ? 150 nm formed in the composites at the surface of plate-like SrFe12O19 crystallites. The Mössbauer studies showed that the composite contained additional (intermediate) phase La0.9Ca0.1Mn(Fe)O3 that formed at the interface between SrFe12O19 and La0.9Ca0.1MnO3 phases. The intermediate phase concentration increased with the molar content of La0.9Ca0.1MnO3; in this case, the fraction of the surface of SrFe12O19 crystallites coated with La0.9Ca0.1MnO3 increased, which led to the increase in the total area of the interface surface and the intermediate phase concentration.  相似文献   

9.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

10.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

11.
C/FeOF/FeF3 nanocomposite was synthesized by a facile in situ partial oxidation method. High-resolution transmission electron microscopy (HR-TEM) showed a special texture comprised of interpenetrating nanodomains of FeOF and FeF3. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements revealed that the introduction of nanodomain FeOF enhanced both the electronic and ionic conductivity of the composite material. Therefore, the improvement of electron and lithium-ion dynamics resulted in the significant enhancement of the electrochemical performances of the material at ambient temperature. At a current density of 20 mA g?1 within potential range 1.5–4.5 V, the specific capacities of the first ten circles were maintained at about 400 mAh g?1 . This material also exhibited excellent cycling capacity retention capability especially for high C rates. When the current density further increased to 100 and 200 mA g?1, a steady capacity of 80 and 60 mAh g?1 was observed, respectively. Furthermore, nearly no capacity loss was observed for the followed cycles. The discharge platforms based on intercalation and conversion reaction were also heightened by about 0.4 V, which increased the contribution of high voltage capacities. Compared to C/FeF3, C/FeOF/FeF3 is showing more of capacitive behavior, which also contributes to the high specific capacity delivered and is believed to be closely related to the enlarged nanodomain interfaces between two electrochemical active materials. An expansion-cracking-oxidation mechanism was proposed to explain the formation of this interpenetrating nanodomains of FeOF and FeF3.  相似文献   

12.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

13.
To further study the lithium ion transportation behavior of cathode material FeF3?·?0.33H2O/C synthesized by a simple one-step chemico-mechanical method, the Electrochemical impedance spectrum (EIS) measured at series of open-circuit voltages were investigated in detail. The results showed that the EIS profiles of FeF3?·?0.33H2O/C materials were strongly potential dependent. The equivalent circuit parameters obtained by fitting the experimental data as a function of open-circuit voltage (OCV) level were depicted. The ohmic resistance R0, solid electrolyte inter-phase resistance R SEI, electronic conduction resistance R E, charge transfer resistance R R, and Q parameter of CPE circuit characteristic of Li+ diffusion Q diff all showed a sudden change at the OCV level 2.5 V. Ohmic resistance R0 had a relatively lower resistance of ca. 10 Ω above OCV level 2.5 V and a higher resistance of about 40 Ω below 2.5 V. Similar situation was also observed for R SEI, which was around 20 Ω above 2.5 V and soared up quickly when the equilibrium potential fell below 2.5 V. Similar variations were also observed for R E and R R. A high resistance of ca. 410 and 520 Ω was obtained at OCV level 2.05 V, respectively. Q diff showed a convex profile, which matched the variation of Li+ diffusion coefficient well.  相似文献   

14.
A new cathode material for lithium ion battery FeF3?·?0.33H2O/C was synthesized successfully by a simple one-step chemico-mechanical method. It showed a noticeable initial discharge capacity of 233.9 mAh g?1 and corresponding charge capacity of 186.4 mAh g?1. A reversible capacity of ca.157.4 mAh g?1 at 20 mA g?1 can be obtained after 50 charge/discharge cycles. To elucidate the lithium ion transportation in the cathode material, the methods of electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) were applied to obtain the lithium diffusion coefficients of the material. Within the voltage level of 2.05–3.18 V, the method of EIS showed that \( {D}_{{\mathrm{Li}}^{+}} \) varied in the range of 1.2?×?10?13?~?3.6?×?10?14 cm2 s?1 with a maximum of 1.2?×?10?13 cm2 s?1 at 2.5 V. The method of GITT gave a result of 8.1?×?10?14?~?1.2?×?10?15 cm2 s?1. The way and the range of the variation for lithium ion diffusion coefficients measured by the GITT method show close similarity with those obtained by the EIS method. Besides, they both reached their maximum at a voltage level of 2.5 V.  相似文献   

15.
In this work, Ni-10 % Sc2O3-stabilized ZrO2 (SSZ)/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ anode-supported solid oxide fuel cells (SOFCs) have been successfully prepared by tape casting and single-step co-sintering procedures. The structure contains Ni-SSZ anode substrate and Ni-SSZ anode functional, dense SSZ electrolyte, LSM-SSZ cathode functional, and LSM-SSZ cathode layers were successfully prepared at 1250, 1300, and 1350 °C, respectively. The microstructures of the single cells were examined by SEM. There were some close pores in electrolyte of Cell-1250, and the cathode particle size obviously increased in Cell-1350. Therefore, Cell-1300 showed the optimal cell performance, the maximum power density attained 920 mW cm?2 at 800 °C. The impedance analysis demonstrated that the co-sintered temperatures have effects on not only the polarization resistance R P of a single cell but also its overall ohmic resistance R S . The results indicate that the tape casting and single-step co-sintering methods are both time saving and feasible for the development of anode-supported SOFCs.  相似文献   

16.
A series of perovskite oxides SrBiMTiO6 (M = Fe, Mn, Cr) have been synthesized and characterized towards application as cathode materials for solid oxide fuel cells (SOFCs). X-ray diffraction (XRD) patterns reveal that all samples are stabilized in \( \mathrm{Pm}\ \overline{3}\mathrm{m} \) space group. Electrical conductivity, AC impedance characteristics, and thermal and chemical stability have been studied in order to assess their possible use as SOFC cathode materials. In comparison with other low electrical conductivity cathodes of SOFC, our results suggest that SrBiMnTiO6, which has the highest electrical conductivity (4.02 S cm?1) and moderate polarization resistance (0.104 Ω cm2) at 850 °C, is the most promising candidate among the three perovskite oxides for further study and optimization as a SOFC cathode material.  相似文献   

17.
Ba0.5Sr0.5[CoxZn0.2-x]Fe0.8O3?C??, (x?=?0, 0.04, 0.08, 0.12) cathode formulations were successfully synthesized by solid state reactions and the effect of cobalt doping at Zn site of Ba0.5Sr0.5Zn0.2Fe0.8O3?C?? (BSZF0.2) on the electrical conductivity, the polarization resistance and electrochemical behavior was evaluated. X-ray diffraction patterns indicate that a single cubic perovskite phase of Ba0.5Sr0.4Co0.8Fe0.2O3?C?? oxide is successfully obtained. Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3?C?? (BSCZF0.16) exhibited a high electrical conductivity of 10 S/cm at 400 °C in comparison to the BSZF0.2 showing 5.5 S/cm. Further, BSCZF0.16 also possess a low polarization resistance as low as 0.22, 0.38, 0.87, and 1.55 ?? cm2 at 750, 700, 650, and 600 °C in air, respectively. Accordingly, a low activation energy value of 149.8 kJ/mol for BSCZF0.16 in comparison to 159.4 kJ/mol for BSZF0.2 indicates high catalytic efficiency. Enhancement of desirable properties such as electrical conductivity in combination with low-polarization resistance and low-activation energy values can be attributed to the coexistence of Co and Zn in the B-site of BSCZF0.16 leading to the multivalent states which contributes to the enhanced electron transport properties demonstrating BSCZF0.16 as a better cathode for intermediate temperature solid oxide fuel cells applications.  相似文献   

18.
In this study, polycrystalline powder Pr0.6Ca0.4Fe0.8Co0.2O3 (PCFC) was synthesized by a sol–gel process. This oxide was analyzed by X-ray powder diffraction. Synthesized Pr0.6Ca0.4Fe0.8Co0.2O3 showed up to be single phase and belongs to the orthorhombic crystalline system with a Pbnm space group. The microstructural features of the synthesized products display particles having an irregular morphology and a size in the range of 50–100 nm. X-ray diffraction (XRD) analysis shows the chemical compatibility between the PCFC cathode and the electrolyte Sm-doped ceria since no reaction products were honored when the material was mixed and co-fired at 1,000 °C for 168 h. The thermal expansion coefficient of PCFC 16.9?×?10?6 °C?1 is slightly higher than that of Ce0.8Sm0.2O1.9 (SDC) over the studied temperature range. The greater contribution to the total resistance of the electrode is the electrochemical resistance associated with oxygen exchange in the cathode surface (0.96 Ωcm2). The dc four-probe measurement indicated that PCFC exhibits fairly high electrical conductivity, over 100 S cm?1 at T?≥?500 °C, making this material promising as a cathode material for intermediate temperature solid oxide fuel cells.  相似文献   

19.
LiFePO4/C composites were synthesized by carbothermal reduction method using commercial FePO4 and Tween#80-assisted synthesized nano-FePO4 as starting materials, glucose as reducing agent, and also carbon source. The FePO4 intermediates were characterized by X-ray diffraction and scanning electron microscopy. A suitable mole ratio of Li to Fe was investigated, and the performances of samples synthesized under different temperatures were studied. It seems that the residual carbon content, which determine the electrochemical polarization of the cathode composites, greatly depend on the synthesis temperature when carbothermal reduction method was used. The electrochemical measurements showed that the discharge capacity first increase and then decrease with the rise of temperature. The optimal sample synthesized at 600 °C for 10 h using homemade FePO4 as iron source exhibit 142 mAh?g?1 at 0.2 C and a capacity retention rate of 98.8 % after 50 cycles.  相似文献   

20.
La0.5Sr0.5CoO3-yttria-stabilized zirconia (LSCO-YSZ) composite cathode for solid oxide fuel cell (SOFC) has been fabricated by wet impregnation method. Nitrate precursors of La, Sr, and Co have been impregnated into the pre-sintered porous YSZ matrix, which is converted into LSCO phase after calcination at 850 °C in the presence of glycine as confirmed from X-ray diffraction. LSCO of 5, 7, and 10 wt% impregnated porous YSZ have been electrochemically characterized using 2-probe AC conductivity method. Maximum ionic conductivity of 0.27 S/cm at 800 °C and activation energy of 0.15 eV between 600 and 800 °C have been observed for 10 wt% LSCO-YSZ cathode. Area-specific resistance of 1.01 Ω cm2 at 800 °C is estimated for the electrolyte-supported half-cell (10 wt% LSCO-YSZ/YSZ). After testing the LSCO-YSZ cathode matrix, the electrolyte-supported full cell (10 wt% LSCO-YSZ/YSZ/NiO-YSZ) has been tested and produced maximum power density 51.12 mW/cm2 (109.38 mA/cm2) at 800 °C. The electrolyte-supported full cell exhibited 6 Ω cm2 electrode polarization at 800 °C in H2, which is in higher side leading to low performance. LSCO-YSZ/YSZ/NiO-YSZ SOFC found to give stable performance up to 2 h and scanning electron microscopy analysis has been carried out before and after cell testing to assess the morphological changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号