首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
孙炫  黎敏  周聪  李玉林 《光学学报》2008,28(s2):335-338
良好的线性度能提高有效测量区域的精度。为提高半导体吸收型光纤温度计的测量精度和范围, 根据光源发射谱应能覆盖半导体的吸收边原理, 利用在常温下发射波长为850nm的光源, 着重讨论了半导体吸收谱线和光源辐射光谱的相互关系对温度测量线性度的影响。通过对GaAs材料的吸收谱随光子能量变化规律的理论分析, 以及光源输出光强随温度变化的实验数据的分析, 将温度线性测量范围从20 ℃~80 ℃拓宽至10 ℃~90 ℃; 从光源的发射光谱特性和选用半导体材料的吸收谱线两个方面着手, 得出提高光源输出功率可相应拓宽温度的线性测量范围的结论, 为半导体吸收型光纤温度传感器的高精度测量提供参考。  相似文献   

2.
三电极真空火花光源和高离化态原子谱线的产生与观测   总被引:1,自引:1,他引:0  
本文敍述了我们新近建造的一台高电压、大电容、低电感三电极真空火花光源。用此光源与SGV-50真空紫外光谱仪相配合,分别用C、Al、Ti等元素作电极,进行了积分光谱的初步观测。在200A—2000A的波段区,辩认出高离化态谱线330条,其中C谱线174条,O谱线68条,N谱线44条,Al谱线24条,Ti谱线20条。实验表明,这种光源使用效果比较好。  相似文献   

3.
溶液样品温度对ICP光源发射强度的影响   总被引:3,自引:1,他引:2  
通过光电检测法研究了溶液样品温度在20,40和60 ℃条件下,对电感耦合等离子体(ICP)光源发射强度的影响。实验结果表明,随着溶液温度的提高,元素钡、铜和锌的谱线强度有明显的增强。观察了在不同溶液温度下,谱线强度随光源观察高度和载气压力的变化规律, 发现温度的提高使最佳观测高度位置降低,而最佳载气压力升高。  相似文献   

4.
谱线强度法所测得温度的物理意义   总被引:2,自引:0,他引:2  
从统计热力学的角度分析了电子温度和激发温度的不同。明确的指出谱线强度法所测得的是重粒子内部电子的激发温度而不是自由电子温度。在热力学平衡态下等离子体激发温度与电子温度相同,在热力学非平衡态下激发温度与电子温度不同。在对真空室中电弧加热发动机羽流的研究中,采用谱线强度法测量了羽流的表观激发温度,同时采用Langmuir探针法测量羽流的电子温度,两种温度之间的巨大差异证实了谱线强度法所测得的温度不是电子温度。  相似文献   

5.
氧碘化学激光器增益谱线的精细结构及腔内温度   总被引:3,自引:2,他引:1       下载免费PDF全文
 采用可调谐二极管激光器做探测光源,测量了超音速氧碘化学激光器增益谱线的精细结构,得到了各谱线相对强度的百分比。同时也推得了增益线宽与腔内温度。  相似文献   

6.
用无狭缝光谱仪获得了广东地区一次人工触发闪电首次回击过程的发射光谱,同时测量了回击电流峰值为18.3kA,回击持续时间为4.5ms。发现导线部分通道的发射谱线中存在407.5,419.0,425.3和517.9nm等激发能比较高的谱线,具有强闪电通道发射光谱的谱线结构,空气部分则具有弱闪电通道的谱线结构;导线部分与空气部分的基本谱线的相对强度差别较小,强闪电特征谱线相对强度相差非常大。通过对导线部分与空气部分谱线激发能等参数的分析,发现回击开始时,导线部分先导通道还未完全消失,回击脉冲电流对先导闪电通道等离子体进行了进一步激发,增加了等离子体的温度和密度,使得导线部分具有较高激发能的谱线被完全激发,相对于空气部分407.5,419.0,425.3和517.9nm等谱线的强度有较大程度的增加,造成导线部分通道与空气通道两种不同的光谱结构。通过光谱分析,获得了闪电通道不同部分的温度、电子密度等参数,发现导线部分通道的辐射特性不同于空气通道是导线部分通道发光亮度与电流相关性较差的原因。  相似文献   

7.
广东沿海地区闪电通道的温度特性研究   总被引:2,自引:1,他引:1  
在广东沿海地区,用无狭缝光栅摄谱仪获得了云对地闪电回击过程的光谱。经过光谱特征分析和谱线辨认,依据测得的谱线相对强度以及多组态Dirac-Fock方法得到的谱线跃迁参数,采用多谱线法,对每个闪电回击通道不同高度处的温度进行了定量计算。结果表明,强闪电放电过程对应的通道温度较高;分析通道不同高度处的温度值,发现对大多数闪电,同一回击通道随高度的增加温度略呈减小趋势;与青海高原相比,广东沿海地区强闪电较多, 光谱上激发能高的一次电离氧离子的跃迁谱线明显增多。  相似文献   

8.
通过设计新型的交流电压激励的氩气等离子体射流,在棒电极的上游与下游区域均产生了大气压非平衡态等离子体羽。该射流与平行场射流和交叉场射流不同,它的电场与气流方向的夹角可以在一定范围内变化。结果表明,随着外加电压或夹角的增加,上游羽的长度增加而下游羽的长度减小。利用光学和电学的方法,研究发现随着外加电压的增加,上下游放电脉冲的个数均增加。利用放电的光学发射谱,发现上游羽有Ar和OH的谱线,而下游羽除了Ar和OH的谱线外,还可以观察到N2的谱线。并且下游羽的谱线强度比上游羽的略高。基于碰撞辐射模型,通过谱线强度比的方法研究了上下游羽的电子密度和电子激发温度。结果表明上下游羽的电子密度随着外加电压的增加而增加。上下游羽的电子激发温度也随着外加电压的增加而增加。并且,在同一外加电压时下游羽的电子密度和电子激发温度均比上游羽的高。此外,利用OH发射光谱研究了上下游羽的气体温度,发现下游羽的气体温度也比上游羽的略高。  相似文献   

9.
王绍民 《物理学报》1962,18(11):594-599
对火花光源中谱线激发强度的时间过程进行了测量;所用装置的分辨时尚为1×10-7秒。在放电时间约为2×10-6秒,工作于临界阻尼状态下的火花中,激发电位高的离子线先出现,而且很短暂。用实验证明在3961.5?重迭的两条AlⅠ与MoⅡ谱线在时间上几乎完全可以分开,提供迴避干扰而利用这些灵敏线作光谱分析的可能性。  相似文献   

10.
引言等离子体的温度和粒子密度是等离子体的两大基本参数,其中温度是考察等离子体的特性及使操作条件最佳化的关键。等离子体的温度有气体动态温度,激发温度,电子温度和电离温度。气体动态温度有分子旋转谱线法和Doppler加宽法,激发温度有两谱线法和Boltzmann斜率法,电子温度有粒子密  相似文献   

11.
乙醇添加剂对ICP光源等离子体辐射的增强效应   总被引:2,自引:0,他引:2  
利用光电检测法,研究了含乙醇水溶液的温度在20,40和60 ℃的条件下,对电感耦合等离子体(ICP)光源发射强度、等离子体参数(激发温度和电子密度)、试液物理性质(表面张力、粘度)及雾化特性(提升量、有效提升量和雾化效率)的影响。实验结果表明,随着乙醇含量及相应溶液温度的提高,分析物进入等离子体的速率增大了,元素Zn,Fe,Mg,Si和Sr的谱线强度有明显增强,而且随着含乙醇样品溶液温度的提高,等离子体中激发能力增强了。在溶液温度为60 ℃时,元素Zn,Fe,Mg,Si和Sr的最大谱线强度比20 ℃时分别高出了55.8%,45.4%,48.9%,17.7%和21.6%,这有利于痕量元素的检测。  相似文献   

12.
拉曼散射分析通常使用多谱线He-Ne激光器作为光源。通过建立多谱线He-Ne激光器腔内棱镜组件的有限元模型,并进行热变形分析,得到了棱镜组件的热变形位移结果。讨论了在棱镜角度改变时多谱线He-Ne激光器输出谱线的变化情况,通过实验进一步验证了仿真结果的准确性。结果表明:多谱线He-Ne激光器长时间工作会使温度升高,严重影响其腔内棱镜的偏转角度,使得其输出谱线发生一定的漂移。当腔内温度继续升高到一定值时会导致激光器不出光,此时,应当采取散热装置或者温度控制措施。  相似文献   

13.
在吸收光谱测量,特别是高温光谱测量中,吸收分子谱线参数的准确性非常重要,目前普遍使用的HITRAN/HITEMP2004数据库中给出的各项参数具有一定的不确定性,为了对所选1.573μm处的9条可用于燃烧诊断的CO2谱线参数进行校准,文章采用窄线宽二极管激光器作为光源,结合自行搭建的实验室高温测量系统,记录了300~800 K温度范围内所选谱线的高温吸收光谱,获得了各谱线在相应温度下的谱线强度、空气加宽系数及其温度指数等谱线参数.通过实验结果与HITRAN/HITEMP2004数据库中数据间的对比发现两者之间吻合较好,其中谱线强度相对偏差小于3%,空气加宽系数及其温度指数相对偏差分别小于5%和2%.所有各项参数对以后将要进行的燃烧诊断中的CO2浓度监测会有很大帮助.  相似文献   

14.
研发能够精确、实时、原位获取热液甲烷数据的深海甲烷传感器对深海研究具有非常重要的意义。前期研制的两款深海甲烷光学成像干涉系统,均利用甲烷辐射光谱开展甲烷状态参数探测和反演。首先,以分子光谱辐射理论为基础,建立了分子辐射光谱与浓度、温度、压强的理论关系式,结合深海高压环境特点,建立了基于Lorentz线型的深海分子辐射模型,该模型为利用光谱法定量反演分子浓度、温度、压强等状态参数提供理论依据,同时为深海分子光谱仿真提供有力工具。接着,借助HITRAN分子光谱数据库提供的分子基本谱线参数,挑选出甲烷成像干涉系统的光源谱线。对比CH4分子与CO2, H2S, H2O等分子的特征吸收谱线,在5 990~6 150 cm-1波段范围内,CH4谱线强度比CO2, H2S, H2O等三种干扰分子的谱线强度约高2~3个数量级,且此波段内甲烷六条有效谱线分布均匀,谱线间距皆约为2~3 nm,非常适合采用光谱法进行分子状态参数探测,因此选择谱线干扰较弱、谱线分布均匀、谱线间距适中的甲烷六条谱线(1 640.37, 1 642.91, 1 645.56, 1 648.23, 1 650.96和1 653.72 nm)作为甲烷成像干涉探测系统的目标光源谱线。最后,基于深海分子辐射模型和HITRAN数据库的甲烷分子基本谱线参数,人工合成了甲烷任意浓度,任意温度和任意压强的辐射光谱数据,并分析了甲烷辐射光谱随浓度、温度和压强的变化特征。对于单一中心谱线,甲烷分子辐亮度随着浓度的升高而线性增大,随着温度的升高而非线性增大,随着压强的升高而非线性减小。对于全波段谱线,甲烷辐射光谱的全线宽随着浓度、温度的升高而变宽,随着压强的升高而变窄。建立的深海甲烷辐射光谱理论和仿真分析结果,可以为基于光谱法的海洋原位甲烷传感器的研制和数据反演提供数据支撑和理论依据。  相似文献   

15.
基于室温量子级联激光器的脉内光谱技术测量N_2O   总被引:2,自引:0,他引:2  
中红外激光光源覆盖了大鼍气体的基频吸收带,尤其适合于痕量气体的高灵敏检测.其中具有高输出功率、宽调谐范围、能够在室温工作的量子级联激光器为高灵敏痕量气体检测技术的研究提供了理想的光源.基于脉冲量子级联激光器的脉内光谱技术提供了一种简单而又有效的测量痕量气体的方法.当一个长激发脉冲作用在激光器上时,激光器的频率随着脉冲持续时间的增加而线性减小,从而在单个脉冲上扫描出被测气体分子的特征吸收谱线,实现对目标气体的定性或者定量分析.介绍了基于分布式量子级联激光器的脉内光谱技术,并采用该技术对N_2O进行了光谱测量.一个500 ns的长激发脉冲应用在脉冲量子级联激光器上用于快速波长扫描,达到接近1 cm~(-1)的线性调谐范围,得到了中心在1 274 cm~(-1)附近的N_2O的吸收谱线,与HITRAN数据库相应的N_2O吸收谱线有着良好的一致性.  相似文献   

16.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

17.
本实验使用2.45 GHz微波(100~200 W)激励产生低压(1~4 kPa)氢等离子体,通过光纤光谱仪探测氢等离子体的发射光谱,并分析了特征谱线分布及谱线强度随压强、功率的变化情况,计算了氢等离子体的电子激发温度.实验结果表明,压强由1 kPa增加至4 kPa,谱线强度减小;功率由100 W增大至200 W,谱线强度增大.随着压强的增大,电子激发温度减小或先减小后增大.  相似文献   

18.
本实验使用2.45 GHz微波(100~200 W)激励产生低压(1~4 kPa)氢等离子体,通过光纤光谱仪探测氢等离子体的发射光谱,并分析了特征谱线分布及谱线强度随压强、功率的变化情况,计算了氢等离子体的电子激发温度.实验结果表明,压强由1 kPa增加至4 kPa,谱线强度减小;功率由100 W增大至200 W,谱线强度增大.随着压强的增大,电子激发温度减小或先减小后增大.  相似文献   

19.
本实验使用2.45 GHz微波(100~200 W)激励产生低压(1~4 kPa)氢等离子体,通过光纤光谱仪探测氢等离子体的发射光谱,并分析了特征谱线分布及谱线强度随压强、功率的变化情况,计算了氢等离子体的电子激发温度.实验结果表明,压强由1 kPa增加至4 kPa,谱线强度减小;功率由100 W增大至200 W,谱线强度增大.随着压强的增大,电子激发温度减小或先减小后增大.  相似文献   

20.
Hou LY  Jia YT 《光谱学与光谱分析》2011,31(12):3281-3284
建立了一套光谱温度诊断系统,对以肼催化分解产物为推进剂的电弧增强推力器羽流信号进行了光谱温度诊断,基于谱线的绝对强度法得到对应不同波长的激发温度,由玻尔兹曼图法获得各条谱线的平均激发温度。结果表明:肼电弧增强推力器羽流中心激发温度最高,沿径向方向迅速下降;羽流的热力学非平衡态程度随径向距离增大和电流减小而降低;羽流温度随肼催化分解混合气中氨气比例增加而升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号