首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High pressure, low temperature Raman measurements performed on LaMnO3 up to 34 GPa provide the first experimental evidence for the persistence of the Jahn-Teller distortion over the entire stability range of the insulating phase. This result resolves the ongoing debate about the nature of the pressure driven insulator to metal transition (IMT), demonstrating that LaMnO3 is not a classical Mott insulator. The formation of domains of distorted and regular octahedra, observed from 3 to 34 GPa, sheds new light on the mechanism behind the IMT suggesting that LaMnO3 becomes metallic when the fraction of undistorted octahedra domains increases beyond a critical threshold.  相似文献   

2.
Many strongly correlated materials display quadrupolar (Jahn-Teller) distortion of the local octahedral structural units. It is common for these distortions to be observed by probes of local structure but absent in the crystallographic average structure. The ordering of these quadrupoles is important in determining the properties of manganites and cuprates, and the nature of the disorder in these structures has been an unsolved problem. We combine high resolution scattering data and novel geometrical modeling techniques to obtain a detailed picture of the local atomic structure, and also to extract the quadrupolar order parameter associated with the distorted octahedra. We show that in LaMnO3, quadrupoles undergo a strong first-order phase transition at 730 K, but with nonzero order parameter remaining in the high-temperature phase.  相似文献   

3.
The local structure of LaMnO3 across the Jahn-Teller (JT) transition at T(JT)=750 K was studied by means of x-ray absorption near edge structure and extended x-ray absorption fine structure at the Mn K-edge. Our results indicate a similar electronic local structure for Mn atoms above and below T(JT) and a dynamical tetragonal JT distortion of MnO6 octahedra above T(JT). The structural transition is originated by the ordering of tetragonally distorted octahedra. The entropy content of the transition is analyzed within the framework of the three-state Potts model with nearest neighbor antiferrodistortive coupling.  相似文献   

4.

Structural, vibrational and electronic properties of LaMnO 3 under pressures up to 38 GPa have been studied by synchrotron X-ray powder diffraction, Raman spectroscopy, optical reflectivity, and transport measurements. The cooperative Jahn-Teller distortion of the MnO 6 octahedra of the perovskite-type structure is continuously suppressed with increasing pressure, a process which appears completed at ~20 GPa. The system remains insulating to 32 GPa, where an insulator-metal transition is observed. This transition is attributed to strengthened Mn--O--Mn interactions due to the increasing overlap of atomic orbitals.  相似文献   

5.
Calculations employing the local density approximation combined with static and dynamical mean field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mott-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller distortion are needed.  相似文献   

6.
LaMnO(3) was studied by synchrotron x-ray diffraction, optical spectroscopies, and transport measurements under pressures up to 40 GPa. The cooperative Jahn-Teller (JT) distortion is continuously reduced with increasing pressure. There is strong indication that the JT effect and the concomitant orbital order are completely suppressed above 18 GPa. The system, however, retains its insulating state to approximately 32 GPa, where it undergoes a bandwidth-driven insulator-metal transition. Delocalization of electron states, which suppresses the JT effect but is insufficient to make the system metallic, appears to be a key feature of LaMnO(3) at 20-30 GPa.  相似文献   

7.
运用第一性原理的方法,研究了磁性形状记忆合金Mn2NiGa在马氏体相变中晶格结构、磁结构、Mn原子d电子结构的变化.研究表明,伴随Mn2NiGa马氏体相变的发生,形成了一个由两根长键及四根短键组成的拉长八面体结构,即产生了沿z轴拉长的Jahn–Teller畸变;在相变时,位于八面体中心的Mn原子的磁矩发生显著的变化,而作为配体的Ni、Ga原子的磁矩变化很微小;Jahn–Teller畸变的发生,是由于晶体的畸变使配位场产生变化,导致Mn原子d电子态密度重新分布,从而使eg和t2g能级分裂所致.  相似文献   

8.
运用第一性原理的方法,研究了磁性形状记忆合金Mn2NiGa在马氏体相变中晶格结构、磁结构、Mn原子d电子结构的变化.研究表明,伴随Mn2NiGa马氏体相变的发生,形成了一个由两根长键及四根短键组成的拉长八面体结构,即产生了沿z轴拉长的Jahn-Teller畸变;在相变时,位于八面体中心的Mn原子的磁矩发生显著的变化,而作为配体的Ni、Ga原子的磁矩变化很微小;Jahn-Teller畸变的发生,是由于晶体的畸变使配住场产生变化,导致Mn原子d电子态密度重新分布,从而使eg和t2g能级分裂所致.  相似文献   

9.
The relative importance of electron-lattice (e-l) and electron-electron (e-e) interactions in ordering orbitals in LaMnO3 is systematically examined within the local-density approximation + Hubbard U approximation of density functional theory. A realistic effective Hamiltonian is derived from novel Wannier state analysis of the electronic structure. Surprisingly, e-l interaction (approximately or = 0.9 eV) alone is found insufficient to stabilize the orbital ordered state. On the other hand, e-e interaction (approximately or = 1.7 eV) not only induces orbital ordering, but also greatly facilitates the Jahn-Teller distortion via enhanced localization. Further experimental means to quantify the competition between these two mechanisms are proposed.  相似文献   

10.
High-pressure optical-absorption measurements performed in CuWO(4) up to 20 GPa provide experimental evidence of the persistence of the Jahn-Teller (JT) distortion in the whole pressure range both in the low-pressure triclinic and in the high-pressure monoclinic phase. The electron-lattice couplings associated with the e(g)(E?e) and t(2g)(T?e) orbitals of Cu(2+) in CuWO(4) are obtained from correlations between the JT distortion of the CuO(6) octahedron and the associated structure of Cu(2+) d-electronic levels. This distortion and its associated JT energy (E(JT)) decrease upon compression in both phases. However, both the distortion and associated E(JT) increase sharply at the phase-transition pressure (P(PT)=9.9 GPa), and we estimate that the JT distortion persists for a wide pressure range not being suppressed up to 37 GPa. These results shed light on the transition mechanism of multiferroic CuWO(4), suggesting that the pressure-induced structural phase transition is a way to minimize the distortive effects associated with the toughness of the JT distortion.  相似文献   

11.
The cooperative Jahn-Teller coupling between the Mn e(g) electrons and the oxygen octahedral distortions in LaMnO3 is studied using ab initio density-functional calculations and tight-binding models. The linear and quadratic vibronic coupling parameters are calculated using density-functional methods. It is shown that the cooperative Jahn-Teller coupling, primarily due to the interoctahedral electron hopping (band structure term), leads to the ordering of the octahedral distortion and simultaneously to orbital ordering. The coupling results in a two-minima adiabatic potential surface in the solid, instead of the three-minima "Mexican-hat" surface for the isolated octahedron.  相似文献   

12.
A phase transition was observed at 63-69 GPa and room temperature in vanadium with synchrotron x-ray diffraction. The transition is characterized as a rhombohedral lattice distortion of the body-centered-cubic vanadium without a discontinuity in the pressure-volume data, thus representing a novel type of transition that has never been observed in elements. Instead of driven by the conventional s-d electronic transition mechanism, the phase transition could be associated with the softening of C44 trigonal elasticity tensor that originates from the combination of Fermi surface nesting, band Jahn-Teller distortion, and electronic topological transition.  相似文献   

13.

This work investigates the Optical Absorption spectrum of the AMnF 4 layer perovskites of Mn 3+ , and its variation with the pressure. We show that the crystal-field transition energies and their pressure shifts provide a very useful information about the local structural changes in the \hbox{MnF}_6^{3-} complex and how it changes with the pressure, once the correlations between crystal-field electronic structure and coordination geometry around Mn 3+ has been established. Along this work we demonstrate that the equatorial and axial distances decrease from 1.844 to 1.813 + , and from 2.167 to 2.090 + , respectively, in the 0-100 kbar range, leading to a partial reduction of the Jahn-Teller distortion.  相似文献   

14.
Litong Jiang 《中国物理 B》2021,30(11):117106-117106
The first-principles calculations were used to explore the tunable electronic structure in DyNiO3 (DNO) under the effects of the biaxial compressive and tensile strains. We explored how the biaxial strain tunes the orbital hybridization and influences the charge and orbital ordering states. We found that breathing mode and Jahn-Teller distortion play a primary role in charge ordering state and orbital ordering state, respectively. Additionally, the calculated results revealed that the biaxial strain has the ability to manipulate the phase competition between the two states. A phase transition point has been found under tensile train. If the biaxial train is larger than the point, the system favors orbital ordering state. If the strain is smaller than the point, the system is in charge ordering state favorably.  相似文献   

15.
The local and intermediate structure of stoichiometric LaMnO3 has been studied in the pseudocubic and rhombohedral phases at high temperatures (300-1150 K). Neutron powder diffraction data were collected and a combined Rietveld and high real space resolution atomic pair distribution function analysis was carried out. The nature of the Jahn-Teller (JT) transition around 750 K is confirmed to be orbital order to disorder. In the high-temperature orthorhombic (O) and rhombohedral (R) phases, the MnO6 octahedra are still fully distorted locally. More importantly, the intermediate structure suggests the presence of local ordered clusters of diameter approximately 16 A ( approximately 4 MnO6 octahedra) implying strong nearest-neighbor JT antiferrodistortive coupling. These clusters persist well above the JT transition temperature even into the high-temperature R phase.  相似文献   

16.
CeVO3 nanocrystals were fabricated by sintering CeVO4 precursors in flowing hydrogen. Under an applied field of 20 Oe, a G-type orbital ordering transition, corresponding to the cooperative Jahn-Teller distortion, was enhanced and observed from the magnetization curve of CeVO3 nanorods, different from that of the nanocrystallites. This enhancement of the orbital ordering transition depended on the giant magnetocrystalline anisotropy induced by strong crystallographic anisotropy. Furthermore, a stronger applied field decreased the anisotropy of electronic state induced by spatial shapes of orbitals and confined the cooperative Jahn-Teller distortion by lifting the orbital degeneracy, leading to the suppression of the orbital ordering transition.  相似文献   

17.
It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids.  相似文献   

18.
Features of the phase transition from the disordered state to the ordered orbital state in a La0.875Sr0.125MnO3 single crystal, caused by the cooperative Jahn-Teller effect, have been investigated. A significant change in the acoustic wave parameters in the entire range of cooperative distortion of the structure is revealed. Application of an external magnetic field shifts the structural phase transition to low temperatures.  相似文献   

19.
The electronic band structure in the CDW state (superlattice structure) of 1T-TiSe2 is calculated on the basis of the band-type Jahn-Teller model by extending our theory of lattice instability in the normal phase. A strong coupling between the hole-band (Se p states) around the Λ point and the electron-bands (Ti d states) around the Λ points is caused by the electron-lattice interaction. Reflecting such a strong coupling remarkable changes appear in the dispersion curves near the Fermi energy and the largest CDW gap is obtained to be 0.2 eV. We have also calculated a change of the density of states near the Fermi energy due to the superlattice formation. The result is consistent with that observed by angle-integrated photoemmision by Margaritondo et al. It is also shown that the magnitude of the lattice distortion observed at low temperatures can be explained in a way consistent with the lattice dynamics in the normal phase.  相似文献   

20.
利用第一性原理计算方法,探讨了体相CrI_3在低温斜方六面体结构(■,BiI_3-type)及高压单斜结构(C2/m,AlCl_3-type)的相变、电子结构和光学性质.计算结果显示,半导体CrI_3当压强增加到26.1GPa时,高压导致的晶格畸变致使CrI_3从相■变化到相C2/m;原子之间的错位位移,使导带处的能带发生下移,价带处的能带发生了一定程度的上移,导致带隙减小.两种相的光学性质进一步验证了这些特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号